
Uday Kiran Rage

Hands-on Pattern
Mining
Theory and Examples with PAMI,
Sklearn, Keras, and TensorFlow

Hands-on Pattern Mining

Uday Kiran Rage

Hands-on Pattern Mining

Theory and Examples with PAMI, Sklearn,
Keras, and TensorFlow

Uday Kiran Rage
Division of Information Systems
University of Aizu
Aizu-Wakamatsu, Fukushima, Japan

ISBN 978-981-96-6790-1 ISBN 978-981-96-6791-8 (eBook)
https://doi.org/10.1007/978-981-96-6791-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2025.

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-5417-0289
https://doi.org/10.1007/978-981-96-6791-8
https://doi.org/10.1007/978-981-96-6791-8
https://doi.org/10.1007/978-981-96-6791-8
https://doi.org/10.1007/978-981-96-6791-8
https://doi.org/10.1007/978-981-96-6791-8
https://doi.org/10.1007/978-981-96-6791-8
https://doi.org/10.1007/978-981-96-6791-8
https://doi.org/10.1007/978-981-96-6791-8
https://doi.org/10.1007/978-981-96-6791-8
https://doi.org/10.1007/978-981-96-6791-8

To my beloved wife,

You are the cornerstone of our family,

holding everything together with grace, love,

and unwavering dedication. Every day, you

give so much of yourself to care for our

children, nurture our home, and ensure our

family thrives. The love and warmth you

infuse into every detail of our lives do not go

unnoticed. They are the quiet miracles that

make our world a better place.

From sleepless nights to laughter-filled

days, from small, unnoticed tasks to big

moments that define our lives, you are there,

giving selflessly and loving unconditionally.

You have made our house a home and turned

our family into a haven of happiness and

love.

This book reflects my gratitude for

everything you do—the countless hours, the

endless energy, and the boundless love you

pour into our children, family, and me. You

are a remarkable mother, a devoted wife, and

the true heart of our family. Without you,

none of this would be possible.

With all my love and deep appreciation,

this book is dedicated to you, the love of my

life and the guiding light of our family.

Preface

Pattern mining, a fundamental concept in data science and machine learning, is at

the heart of discovering valuable insights from real-world big data. This book delves

into the intricate world of pattern mining, offering a comprehensive theoretical and

practical guide for beginners and seasoned practitioners.

In the current data-driven era, where information overload is a significant

challenge for enterprises, the ability to uncover meaningful patterns from big data

has become indispensable. Pattern mining enables us to make informed decisions by

discovering useful information in numerous forms (e.g., frequent, recurring, high-

utility, and periodic patterns) across various domains (e.g., retail, healthcare, and

finance).

This book is designed to be a practical companion, blending theoretical foun-

dations with hands-on techniques and applications. It covers a spectrum of topics

ranging from basic concepts to advanced techniques. The practical examples in

this book are covered using an open-source PAttern MIning (PAMI) library. The

implementation code and the sample datasets accompanying the examples in this

book can be accessed on our GitHub repository: https://github.com/UdayLab/

Hands-on-Pattern-Mining.

Throughout this book, readers will explore different types of datasets, algorithms,

methodologies, and interestingness metrics used in pattern mining. While the book

focuses primarily on mining certain data, it also touches upon emerging trends and

innovations, such as pattern mining in uncertain data and integration with machine

learning techniques.

Whether you are a student, researcher, data scientist, or industry practitioner,

this book aims to be a valuable resource. It provides theoretical insights and

practical guidance on effectively navigating the complexities of pattern mining. This

book also guides researchers in evaluating the algorithms, plotting the results, and

vii

https://github.com/UdayLab/Hands-on-Pattern-Mining
https://github.com/UdayLab/Hands-on-Pattern-Mining
https://github.com/UdayLab/Hands-on-Pattern-Mining
https://github.com/UdayLab/Hands-on-Pattern-Mining
https://github.com/UdayLab/Hands-on-Pattern-Mining
https://github.com/UdayLab/Hands-on-Pattern-Mining
https://github.com/UdayLab/Hands-on-Pattern-Mining
https://github.com/UdayLab/Hands-on-Pattern-Mining

viii Preface

generating the latex files for publication purposes. We hope this book serves as a

beacon of knowledge, empowering readers to unlock the hidden treasures buried in

their data.

Happy mining!

Aizu-Wakamatsu, Fukushima, Japan Uday Kiran Rage

March 2025

Acknowledgments

This book would not have been possible without the support and guidance of many

remarkable individuals and institutions.

First, I would like to express my deepest gratitude to my supervisor, Prof.

P. Krishna Reddy, whose wisdom, insight, and constant encouragement were

invaluable throughout this journey. His thoughtful mentorship and dedication to my

growth pushed me to achieve more than I ever thought possible.

To my family, your unwavering support and love have been the foundation upon

which I built this work. Thank you for your patience, understanding, and belief in

me throughout this journey. I am deeply grateful for everything you have done.

I would also like to acknowledge the University of Aizu for providing an enrich-

ing learning environment, growth, and inspiration. The opportunities, resources, and

sense of community I experienced here have shaped this book and played a crucial

role in my academic and personal development.

A special thank you to my students, Palla Likhitha, Tarun Sreepada, Suzuki

Shota, and Kattumuri Vanitha, whose coding, testing, and proofreading assistance

was invaluable. Your hard work, attention to detail, and commitment greatly

enhanced the quality of this book, and I sincerely appreciate all your efforts.

Thanks to everyone who contributed to this project in any way. Your support,

encouragement, and expertise have made this work possible.

Competing Interests The author has no competing interests to declare that are

relevant to the content of this manuscript.

ix

Contents

Part I Fundamentals

1 Getting Started with PAMI: Introduction, Maintenance,

and Usage . 3

1.1 Origins . 3

1.2 Architecture. 4

1.3 Inputs and Outputs of a Mining Algorithm . 6

1.4 Maintaining the PAMI Package . 6

1.5 Execution of Algorithms . 7

1.5.1 Terminal Execution . 7

1.5.2 Importing an Algorithm . 8

1.6 Evaluating Multiple Pattern Mining Algorithm. 9

1.7 Plotting the Results . 11

1.8 Exporting the Results in Latex Format . 12

1.9 Contributing . 14

1.10 Support. 14

1.11 Conclusion . 14

References . 14

2 Handling Big Data: Classification, Storage, and Processing

Techniques . 17

2.1 Basic Classifications of Big Data . 17

2.1.1 Based on Data Structure . 17

2.1.2 Based on Veracity. 18

2.1.3 Based on the Attribute’s Value . 18

2.1.4 Based on the Attribute’s Dimensionality 18

2.1.5 Based on Storage . 18

2.2 Approaches for Storing Big Data . 19

2.3 Processing Big Data . 21

2.4 Conclusion . 22

References . 22

xi

xii Contents

3 Transactional Databases: Representation, Creation, and Statistics . . 25

3.1 Introduction . 25

3.2 Theoretical Representation . 26

3.3 Practical Representation . 27

3.4 Creating Synthetic Transactional Databases . 28

3.5 Deriving a Transactional Database from a Dataframe 29

3.6 Knowing the Statistical Details . 29

3.7 Conclusion . 30

Reference . 31

4 Pattern Discovery in Transactional Databases . 33

4.1 Introduction . 33

4.2 Frequent Patterns . 34

4.2.1 Basic Model. 34

4.2.2 Search Space . 35

4.2.3 The Apriori Property . 36

4.2.4 Finding Frequent Patterns . 36

4.2.5 Popular Variants of Frequent Patterns . 37

4.3 The Rare Item Problem in Frequent Pattern Mining. 40

4.4 Solutions to the Rare Item Problem . 40

4.4.1 Finding Frequent Patterns Using Multiple

Minimum Supports . 41

4.4.2 Correlated Patterns . 42

4.4.3 Relative Frequent Patterns . 43

4.4.4 Fault-Tolerant Patterns . 44

4.5 Discovering Association Rules . 46

4.6 Conclusion . 47

References . 47

5 Temporal Databases: Representation, Creation, and Statistics 49

5.1 Introduction . 49

5.2 Theoretical Representation . 51

5.3 Practical Representation . 52

5.4 Creating Synthetic Temporal Databases . 53

5.5 Deriving a Temporal Database from a Dataframe 53

5.6 Knowing the Statistical Details . 54

5.7 Conclusion . 55

References . 55

6 Pattern Discovery in Temporal Databases . 57

6.1 Introduction . 57

6.2 Periodic-Frequent Patterns . 58

6.2.1 The Basic Model. 58

6.2.2 Search Space and Apriori Property . 60

6.2.3 Finding Periodic-Frequent Patterns . 61

6.3 Popular Variants of Periodic-Frequent Patterns . 62

Contents xiii

6.3.1 Closed Periodic-Frequent Patterns . 62

6.3.2 Maximal Periodic-Frequent Patterns . 63

6.3.3 Top-k Periodic-Frequent Patterns . 65

6.4 Main Issues of Periodic-Frequent Pattern Mining 65

6.5 Addressing the Rare Item Problem . 66

6.5.1 Periodic-Correlated Pattern Mining . 66

6.5.2 Implementation Example: Finding

Periodic-Correlated Patterns . 67

6.6 Finding Partial Periodic Patterns . 68

6.6.1 Partial Periodic-Frequent Patterns . 69

6.6.2 Partial Periodic Patterns . 70

6.6.3 Recurring Patterns . 72

6.7 Conclusion . 73

References . 73

7 Spatial Databases: Representation, Creation, and Statistics 75

7.1 Introduction . 75

7.2 Theoretical Representation . 76

7.2.1 Spatial Database . 76

7.2.2 Geo-referenced Transactional Database 77

7.2.3 Geo-referenced Temporal Database . 78

7.3 Practical Representation . 79

7.3.1 Spatial Database . 79

7.3.2 Geo-referenced Transactional Database 80

7.3.3 Geo-referenced Temporal Database . 80

7.4 Creating Synthetic Datasets. 81

7.4.1 Generating Synthetic Geo-referenced

Transactional Database . 82

7.4.2 Generating Synthetic Geo-referenced Temporal

Database. 82

7.5 Deriving Geo-referenced Databases from a Dataframe 83

7.5.1 Dataframe to Geo-referenced Transactional Database 83

7.5.2 Dataframe to Geo-referenced Temporal Database 84

7.6 Knowing the Statistical Details . 85

7.6.1 Statistical Details of a Geo-referenced

Transactional Database . 85

7.6.2 Statistical Details of a Geo-referenced Temporal

Database. 86

7.7 Conclusion . 87

References . 87

8 Pattern Discovery in Spatial Databases . 89

8.1 Introduction . 89

8.2 Neighboring Items. 91

8.2.1 Definition . 91

xiv Contents

8.2.2 Practical Representation . 92

8.2.3 Creating Neighborhood File . 93

8.3 Geo-referenced Frequent Pattern . 93

8.3.1 The Basic Model. 93

8.3.2 Handling the Search Space . 95

8.3.3 Finding Geo-referenced Frequent Patterns 96

8.4 Geo-referenced Periodic-Frequent Pattern . 96

8.4.1 The Basic Model. 96

8.4.2 Handling the Search Space . 98

8.4.3 Finding Geo-referenced Periodic-Frequent Patterns 98

8.5 Conclusion . 99

References . 99

9 Utility Databases: Representation, Creation, and Statistics 101

9.1 Introduction . 101

9.2 Theoretical Representation . 102

9.3 Practical Representation . 104

9.4 Creating Synthetic Utility Databases . 105

9.5 Deriving a Utility Database from a Dataframe. 105

9.6 Understanding the Statistical Details . 106

9.7 Variants of Utility Databases . 107

9.7.1 Temporal Utility Database . 107

9.7.2 Geo-referenced Transactional Utility Database 107

9.7.3 Geo-referenced Temporal Utility Database 108

9.8 Conclusion . 108

References . 108

10 Pattern Discovery in Utility Databases . 109

10.1 Introduction . 109

10.2 High Utility Patterns . 110

10.2.1 Basic Model. 110

10.2.2 Search Space . 111

10.2.3 Finding High Utility Patterns . 111

10.3 High Utility Frequent Patterns . 112

10.3.1 Basic Model. 112

10.3.2 Search Space . 112

10.3.3 Finding High Utility Frequent Patterns . 113

10.4 Conclusion . 113

References . 114

11 Sequence Databases: Representation, Creation, and Statistics 115

11.1 Introduction . 115

11.2 Theoretical Representation . 116

11.3 Practical Representation . 116

11.4 Creating Synthetic Sequence Databases . 117

11.5 Deriving a Sequence Database from a Dataframe 118

Contents xv

11.6 Knowing the Statistical Details . 119

11.7 Conclusion . 120

References . 120

12 Pattern Discovery in Sequence Databases . 121

12.1 Introduction . 121

12.2 Frequent Sequence Patterns . 122

12.2.1 Basic Model. 122

12.2.2 Search Space . 122

12.2.3 Mining Algorithm . 122

12.3 Conclusion . 123

References . 123

Part II Advanced Concepts

13 Mining Symbolic Sequences . 127

13.1 Introduction . 127

13.2 Theoretical Representation . 128

13.3 Practical Representation . 128

13.4 Creating Synthetic Symbolic Sequence Databases 129

13.5 Knowing the Statistical Details . 130

13.6 Frequent Contiguous Patterns . 131

13.6.1 Basic Model. 131

13.6.2 Mining Algorithm . 132

13.7 Conclusion . 132

14 Pattern Discovery in Fuzzy Databases . 135

14.1 Introduction . 135

14.2 Theoretical Representation . 136

14.3 Practical Representation . 137

14.4 Fuzzy Frequent Patterns . 138

14.4.1 Basic Model. 138

14.4.2 Mining Algorithm . 140

14.5 Other Types of Fuzzy Databases . 141

14.6 Conclusion . 141

References . 141

15 Knowledge Discovery in Uncertain Databases . 143

15.1 Introduction . 143

15.2 Theoretical Representation . 144

15.3 Practical Representation . 145

15.4 Creating Synthetic Uncertain Transactional Database. 146

15.5 Converting a Dataframe into an Uncertain Transactional

Database . 146

15.6 Obtaining Statistical Details . 147

15.7 Frequent Pattern Discovery . 148

15.7.1 Basic Model. 148

xvi Contents

15.7.2 Search Space . 149

15.7.3 Inability of Apriori Property . 149

15.7.4 Finding Frequent Patterns . 150

15.8 Conclusion . 151

References . 151

16 Finding Useful Patterns in Graph Databases . 153

16.1 Introduction . 153

16.2 Theoretical Representation . 155

16.3 Practical Representation . 156

16.3.1 Traditional Format . 156

16.3.2 Compressed Format . 157

16.3.3 Procedures for Converting Traditional into

Compressed Format . 157

16.4 Creating Synthetic Graph Transactional Database. 158

16.5 Visualizing the Graph Database . 159

16.6 Obtaining Statistical Details . 159

16.7 Frequent Subgraph Pattern Discovery . 160

16.7.1 Basic Model. 160

16.7.2 Finding Frequent Subgraph Patterns. 161

16.7.3 Visualization of the Frequent Subgraphs 161

16.8 Top-k Subgraphs . 162

16.8.1 Basic Model. 162

16.8.2 Finding Top-k Subgraphs . 162

16.8.3 Visualization of the Top-k Subgraphs . 163

16.9 Conclusion . 163

References . 163

Part III Applications

17 Discovering Air Pollution Patterns Through the KDD Process 167

17.1 Introduction . 167

17.2 A Step-by-Step Guide to the KDD Process . 169

17.2.1 Step 1: Requirements . 169

17.2.2 Step 2: Selecting the Target Data . 169

17.2.3 Step 3: Preprocessing . 170

17.2.4 Step 4: Data Transformation . 171

17.2.5 Step 5: Pattern Discovery . 171

17.2.6 Step 6: Visualization of Patterns . 172

17.3 Conclusion . 173

References . 173

18 Discovering Futuristic Pollution Patterns Using Forecasting

and Pattern Mining . 175

18.1 Introduction . 175

18.2 Step-by-Step Guide to Discovering Future Pollution Patterns 175

Contents xvii

18.2.1 Step 1: Install Required Libraries . 175

18.2.2 Step 2: Selecting the Target Data . 176

18.2.3 Step 3: Preprocessing . 177

18.2.4 Step 4: Building Forecast Model. 178

18.2.5 Step 5: Converting the Predicted Multiple

Timeseries Data into a Transactional Database 180

18.2.6 Step 6: Pattern Discovery . 180

18.2.7 Step 6: Visualization of Patterns . 180

18.3 Conclusion . 181

References . 182

Part I

Fundamentals

Chapter 1

Getting Started with PAMI:
Introduction, Maintenance, and Usage

Abstract Pattern mining is essential for uncovering valuable patterns hidden in

big data. While software such as WEKA, Mahout, SPMF, and Knime offer some

capabilities, they are often limited in algorithms or integration. To overcome

these limitations, researchers at the University of Aizu have developed the pattern

mining (PAMI) package. This open-source Python package, available on GitHub

and distributed through the Python Package Index, offers over 80 algorithms to

identify user interest-based patterns in various databases across multiple computing

environments. This chapter introduces the architecture and systematic organization

of the algorithms in PAMI. It provides detailed guidance on the installation,

maintenance, and execution of the algorithms in PAMI, both from the terminal and

within Python programs. Additionally, the chapter explains the input and output

requirements for the algorithms, including how they report runtime and memory

usage. Through practical examples and instructions, this chapter aims to help users

effectively utilize the PAMI package for pattern mining tasks.

1.1 Origins

Pattern mining is a crucial big data analytical technique to uncover interesting

patterns hidden in the data. This technique has numerous real-world applica-

tions. For example, in market basket analysis, pattern mining helps businesses

understand which products are frequently purchased together, supporting inventory

management and targeted marketing. In cybersecurity, pattern mining is crucial for

anomaly detection, enabling the identification of unusual patterns that could indicate

fraudulent activities or security breaches. In transportation systems, pattern mining

assists in identifying frequently congested road segments, which is valuable for

urban planning and optimizing route recommendations.

Existing pattern mining tools like WEKA [1], Mahout [2], Knime [3], Rapid-

Miner [4], MLxtend [5], and Orange [6] typically offer limited algorithms. While

these tools are helpful, they may not adequately address the diverse needs of users

working with various data types and analytical tasks. On the other hand, specialized

software like Coron [7] and LUCS-KDD [8] provides a broader array of algorithms

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_1
https://doi.org/10.1007/978-981-96-6791-8_1
https://doi.org/10.1007/978-981-96-6791-8_1
https://doi.org/10.1007/978-981-96-6791-8_1
https://doi.org/10.1007/978-981-96-6791-8_1
https://doi.org/10.1007/978-981-96-6791-8_1
https://doi.org/10.1007/978-981-96-6791-8_1
https://doi.org/10.1007/978-981-96-6791-8_1
https://doi.org/10.1007/978-981-96-6791-8_1
https://doi.org/10.1007/978-981-96-6791-8_1
https://doi.org/10.1007/978-981-96-6791-8_1

4 1 Getting Started with PAMI: Introduction, Maintenance, and Usage

tailored for more specific pattern mining tasks. These tools offer greater flexibility

and capability in handling complex data mining needs. However, they often come

with challenges like outdated development, limited customization, and restricted

commercial use.

The Sequence Pattern Mining Framework (SPMF) [9] stands out for its com-

prehensive algorithms for discovering useful patterns from various databases,

including transactional, sequential, and graph databases. However, its Java-based

implementation can raise challenges in integrating with popular Python-based

machine learning libraries like TensorFlow, PyTorch, and Scikit-learn, which are

commonly used in data science.

To address the limitations of current pattern mining tools, researchers at the

University of Aizu have developed the PAttern MIning (PAMI) [10] package. This

open-source Python package, licensed under the GNU V3 License, provides over 80

algorithms for identifying user interest-based patterns across various databases and

computing environments.

•! Attention
The open-source PAMI package is supplied under the GNU V3 License.

PAMI is designed to be cross-platform, working seamlessly on Windows, Linux,

and macOS. It is hosted on GitHub,1 which fosters transparency and encourages

collaborative development. Users can install, update, or uninstall the package via

the Python Package Index2 using the pip command.

For detailed guidance, PAMI offers comprehensive documentation on Read

the Docs,3 which covers its features, installation, and usage. Additionally, PAMI

includes practical examples in Jupyter Notebooks, which can be run on platforms

like Google Colab or local machines. These interactive notebooks help users of all

skill levels learn and experiment with PAMI’s extensive pattern mining capabilities.

1.2 Architecture

The PAMI package adheres to camel casing naming conventions and organizes

its algorithms using a hierarchical structure. This systematic arrangement aids in

navigating and retrieving algorithms based on their characteristics and functions.

The hierarchical structure is outlined as follows:

1 The PAMI package’s source code can be found at https://github.com/UdayLab/PAMI.
2 The distribution URL of the PAMI package is https://pypi.org/project/pami/.
3 The URL for code documentation is https://pami-1.readthedocs.io/en/latest/.

https://github.com/UdayLab/PAMI
https://github.com/UdayLab/PAMI
https://github.com/UdayLab/PAMI
https://github.com/UdayLab/PAMI
https://github.com/UdayLab/PAMI
https://pypi.org/project/pami/
https://pypi.org/project/pami/
https://pypi.org/project/pami/
https://pypi.org/project/pami/
https://pypi.org/project/pami/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/

1.2 Architecture 5

1. Package Name: The top-level category is “PAMI,” encompassing all algorithms

within the package.

2. Theoretical Model: Algorithms are categorized based on their theoretical

models, such as frequent, correlated, and high utility patterns.

3. Pattern Type: This level specifies the type of patterns discovered by the

algorithms, including:

• Basic: Patterns fitting the given theoretical model

• Maximal Patterns: Patterns that are not subsets of any other patterns

• Closed Patterns: Patterns where no superset has the same support count

• Top-k Patterns: Patterns based on frequency, correlation, or periodicity

criteria

4. Mining Algorithms: The lowest level lists the specific mining algorithms used

to extract patterns based on the previous categories.

Figure 1.1a shows an abstract representation of the hierarchical arrangement,

while Fig. 1.1b provides a concrete example of the organization within this frame-

work. Additionally, PAMI includes an “extras” sub-package with additional tools

Fig. 1.1 Package structure of PAMI. (a) Abstract representation. (b) An example

6 1 Getting Started with PAMI: Introduction, Maintenance, and Usage

for generating synthetic databases, converting dataframes into various database

formats, getting the statistical information of the databases, visualizing the results,

and exporting the results in latex for publication purposes.

1.3 Inputs and Outputs of a Mining Algorithm

Figure 1.2 outlines the inputs and outputs of a mining algorithm in the PAMI

package. Each algorithm requires data in a specific format and constraints. Data

can be provided in three formats: a text file, a dataframe, or a URL for remote

datasets. Outputs include the discovered patterns, which can be exported as a

list, dataframe, or text file. Algorithms also report their runtime and memory

consumption, measured as resident set size (RSS) and unique set size (USS).

1.4 Maintaining the PAMI Package

The PAMI package is designed for easy installation and maintenance using the “pip”

command. Table 1.1 lists the basic commands required to manage the package,

including installation, upgrading, uninstallation, and showing information.

Fig. 1.2 Inputs and outputs of a mining algorithm

Table 1.1 Basic pip

commands to maintain PAMI

package

S. No. Purpose Command

1 Installation pip install pami

2 Upgradation pip install –upgrade pami

3 Uninstall pip uninstall pami

4 Information pip show pami

1.5 Execution of Algorithms 7

1.5 Execution of Algorithms

The algorithms in the PAMI package are executed on a terminal or integrated into

their Python programs. We now explain these two processes briefly.

1.5.1 Terminal Execution

To run an algorithm from the terminal, navigate to the algorithm’s directory and

execute the script with the necessary input and output files and any additional

parameters. Below is the generic syntax and a detailed example of executing the

renowned Apriori algorithm.

Generic Code 1: Terminal Execution

$ cd <pathToAlgorithm>

$ python algorithm.py inputFile outputFile constraints

Here:

• <pathToAlgorithm> is the directory containing the algorithm s cript.

• algorithm.py is the script to ex ecute.

• inputFile is the file with input data.

• outputFile is where the results will be sav ed.

• constraints are additional parameters the algorithm r equires.

Example 1: Apriori Execution

$ cd PAMI/frequentPattern/basic

$ python Apriori.py sampleDB.txt patterns.txt 10

In the above example:

1. Change Directory: $ cd PAMI/frequentPattern/basic sets the current

directory.

2. Execute Python Script: $ python Apriori.py sampleDB.txt patterns.txt

10 runs the script with:

• python: Invokes the Python interpreter.

• Apriori.py: The script to execute.

8 1 Getting Started with PAMI: Introduction, Maintenance, and Usage

• sampleDB.txt: Input data file.

• patterns.txt: Output file for storing the patterns.

• 10: Minimum support in count.

This method of running scripts is commonly used in various data processing tasks.

Scripts typically take input files, process the data based on defined constraints or

parameters, and produce output files containing the results. This approach ensures

the workflow is organized and the results are systematically stored for further

analysis or reporting.

1.5.2 Importing an Algorithm

Users can import the necessary PAMI modules into their Python programs for more

advanced usage. This method not only enables the execution of algorithms but also

allows for greater control over data preprocessing, post-processing, visualization,

and the incorporation of additional logic or functionality. The generic Python code

and an example4 to implement any mining algorithm from the PAMI package are

shown below:

Generic Code 2: Implementing a Pattern Mining Algorithm

1 from PAMI.theoreticalModel.patternType import algorithm as alg

2 # Initialization

3 obj = alg.algorithm(inputFile, constraints, sep='\t')

4

5 # Mining the patterns

6 obj.mine()

7

8 # Save the discovered patterns

9 obj.save(outputFileName)

10

11 # Print the results

12 print('Total number of patterns: ' +

str(len(obj.getPatterns())))→֒

13 print('Runtime: ' + str(obj.getRuntime()))

14 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

15 print('Memory (USS): ' + str (obj.getMemoryUSS()))

4 The file used in this experiment can be downloaded from the URL: https://web-ext.u-aizu.ac.jp/~

udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv.

https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv

1.6 Evaluating Multiple Pattern Mining Algorithm 9

Example 2: Implementing the Apriori Algorithm

1 import PAMI.frequentPattern.basic.Apriori as alg

2

3 # Create an Apriori object

4 obj = alg.Apriori(iFile = 'Transactional_T10I4D100K.csv',

5 minSup = 500)

6 # Run the mining process

7 obj.mine()

8 # Save the frequent patterns to an output file

9 obj.save(oFile = 'patterns.txt')

10 # Print the results

11 print('Total number of patterns: ' +

str(len(obj.getPatterns())))→֒

12 print('Runtime: ' + str(obj.getRuntime()))

13 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

14 print('Memory (USS): ' + str (obj.getMemoryUSS()))

1.6 Evaluating Multiple Pattern Mining Algorithm

The “PAMI” package helps us evaluate the performance of multiple pattern mining

algorithms on a dataset. The generic and the sample codes are provided below:

Generic Code 3: Evaluating Multiple Algorithms

1 #import the algorithms

2 from PAMI.theoreticalModel.patternType import algorithm1 as

alg1→֒

3 from PAMI.theoreticalModel.patternType import algorithm2 as

alg2→֒

4 #you can import multiple algorithms

5 import pandas as pd #to store results

6

7 #Create a list of threshold values

8 constraintList = [100, 150,200]

9

10 #Create a dataframe to store results

10 1 Getting Started with PAMI: Introduction, Maintenance, and Usage

11 resultDF = pd.DataFrame(columns=['algorithm',

'minSup','patterns', 'runtime', 'memoryRSS', 'memoryUSS'])→֒

12

13 #implement each algorithm and store the results in a dataframe

14

15 for constraint in constraintList:

16 obj = alg1.algorithm1(inputParameters)

17 obj.mine()

18 resultDF.loc[resultDF.shape[0]]=['algorithm1',

constraint,len(obj.getPatterns()), obj.getRuntime(),

obj.getMemoryRSS(), obj.getMemoryUSS()]

→֒

→֒

19

20 for constraint in constraintList:

21 obj = alg2.algorithm2(inputParameters)

22 obj.mine()

23 resultDF.loc[resultDF.shape[0]]=['algorithm2',

constraint,len(obj.get patterns()), obj.getRuntime(),

obj.getMemoryRSS(), obj.getMemoryUSS()]

→֒

→֒

24

25 #repeat the above steps for the remaining algorithms

Example 3: Evaluating Multiple Algorithms

1 from PAMI.frequentPattern.basic import Apriori as alg1

2 from PAMI.frequentPattern.basic import FPGrowth as alg2

3 import pandas as pd

4

5 minimumSupportCountList = [1000, 1500, 2000, 2500, 3000]

6

7 resultDF = pd.DataFrame(columns=['algorithm',

'minSup','patterns', 'runtime', 'memoryRSS', 'memoryUSS'])→֒

8

9

10 for minSupCount in minimumSupportCountList:

11 obj = alg1.Apriori(iFile='Transactional_T10I4D100K.csv',

minSup=minSupCount,sep='\t')→֒

12 obj.mine()

13 resultDF.loc[resultDF.shape[0]]=['Apriori',

minSupCount,len(obj.getPatterns()), obj.getRuntime(),

obj.getMemoryRSS(), obj.getMemoryUSS()]

→֒

→֒

14

1.7 Plotting the Results 11

15 for minSupCount in minimumSupportCountList:

16 obj = alg2.FPGrowth(iFile='Transactional_T10I4D100K.csv',

minSup=minSupCount, sep='\t')→֒

17 obj.mine()

18 resultDF.loc[resultDF.shape[0]]=['FPgrowth',

minSupCount,len(obj.getPatterns()),

obj.getRuntime(),obj.getMemoryRSS(),

obj. getMemoryUSS()]

→֒

→֒

→֒

19

20 resultDF #print dataframe

1.7 Plotting the Results

The generated results about the number of produced patterns, runtime, and memory

can be visualized and exported as graphs using the PAMI library. The generic syntax

and a sample code can be found below.

Generic Code 4: Viewing the Results

1 from PAMI.extras.graph import PlotLineGraphs4DataFrame as dif

2 # Pass the result data frame to the class

3 obj = dif.PlotLineGraphs4DataFrame(resultDF)

4 # Plotting the graphs

5 obj.plot(result=resultDF, xaxis='constraint', yaxis='patterns',

label='algorithm')→֒

6 obj.plot(result=resultDF, xaxis='constraint', yaxis='runtime',

label='algorithm')→֒

7 obj.plot(result=resultDF, xaxis='constraint',

yaxis='memoryRSS', label='algorithm')→֒

8 obj.plot(result=resultDF, xaxis='constraint',

yaxis='memoryUSS', label='algorithm')→֒

9 #saving the graphs' results

10 obj.save(result=resultDF, xaxis='constraint', yaxis='patterns',

label ='algorithm',oFile='patterns.jpg')→֒

11 obj.save(result=resultDF, xaxis='constraint', yaxis='runtime',

label='algorithm',oFile='runtime.jpg')→֒

12 1 Getting Started with PAMI: Introduction, Maintenance, and Usage

12 obj.save(result=resultDF, xaxis='constraint',

yaxis='memoryRSS', label='algorithm',oFile='memoryRSS.jpg')→֒

13 obj.save(result=resultDF, xaxis='constraint',

yaxis='memoryUSS', label='algorithm',oFile= 'memoryUSS.jpg')→֒

Example 4: Viewing the Results

1 from PAMI.extras.graph import PlotLineGraphs4DataFrame as dif

2 # Pass the result data frame to the class

3 obj = dif.PlotLineGraphs4DataFrame(resultDF)

4 # Draw the graphs

5 obj.plot(result=resultDF, xaxis='minSup', yaxis='patterns',

label='algorithm')→֒

6 obj.plot(result=resultDF, xaxis='minSup', yaxis='runtime',

label='algorithm')→֒

7 obj.plot(result=resultDF, xaxis='minSup', yaxis='memoryRSS',

label='algorithm')→֒

8 obj.plot(result=resultDF, xaxis='minSup', yaxis='memoryUSS',

label='algorithm')→֒

9 #saving the graphs' results

10 obj.save(result=resultDF, xaxis='minSup', yaxis='patterns',

label='algorithm',oFile='patterns.jpg')→֒

11 obj.save(result=resultDF, xaxis='minSup', yaxis='runtime',

label='algorithm',oFile='runtime.jpg')→֒

12 obj.save(result=resultDF, xaxis='minSup', yaxis ='memoryRSS',

label='algorithm',oFile='memoryRSS.jpg')→֒

13 obj.save(result=resultDF, xaxis='minSup', yaxis='memoryUSS',

label='algorithm',oFile='memoryUSS.jpg ')→֒

1.8 Exporting the Results in Latex Format

The “extras” package in the PAMI library contains a Python program that accepts

the dataframe containing the results of various algorithms and outputs the latex code

that the researchers can later use in their experimental section to draw plots. The

generic Python code and an example to export the results in the Latex format are

shown below:

1.8 Exporting the Results in Latex Format 13

Generic Code 5: Exporting the Results in Latex

1 from PAMI.extras.graph import Results2Latex as res

2 #Initailize

3 obj = res.Results2Latex()

4

5 #Printing the latex code

6 obj.print(result=resultDF,xaxis='xLabel',yaxis='yLabel',\

7 label='algorithm')

8 #Saving the latex code in a file

9 obj.save(result=resultDF,xaxis ='xLabel',yaxis='yLabel',\

10 label='algorithm',oFile='outputFileName.txt')

Example 5: Exporting the Results in Latex

1 from PAMI.extras.graph import Results2Latex as res

2

3 obj = res.Results2Latex()

4 #Printing the latex code on the terminal

5 obj.print(result=resultDF, xaxis='minSup',

yaxis='patterns',label='algorithm')→֒

6 obj.print(result=resultDF, xaxis='minSup', yaxis='runtime',

label='algorithm')→֒

7 obj.print(result=resultDF, xaxis='minSup',

yaxis='memoryRSS',label='algorithm')→֒

8 obj.print(result=resultDF, xaxis='minSup', yaxis='memoryUSS',

label='algorithm')→֒

9 #save the latex code in a file

10 obj.save(result=resultDF, xaxis='minSup', yaxis='patterns',

label='algorithm', oFile='patterns.txt')→֒

11 obj.save(result=resultDF, xaxis='minSup', yaxis='runtime',

label='algorithm', oFile='runtime.txt')→֒

12 obj.save(result=resultDF, xaxis='minSup', yaxis='memoryRSS ',

label='algorithm', oFile='memoryRSS.txt')→֒

13 obj.save(result=resultDF, xaxis='minSup', yaxis='memoryUSS',

label='algorithm', oFile='memoryUSS.txt')→֒

14 1 Getting Started with PAMI: Introduction, Maintenance, and Usage

1.9 Contributing

We welcome contributions to the PAMI package. If you have suggestions, improve-

ments, or bug fixes, please mention them in the Discussions section of GitHub. Your

contributions are crucial for enhancing the package and supporting the community.

1.10 Support

For support and troubleshooting, please check the Issues section of the GitHub

repository. If you encounter any specific problems or need further assistance, contact

the maintainers directly through the Discussion Forum.

1.11 Conclusion

The PAMI package has been designed and developed to empower users with

robust tools for discovering and analyzing patterns in their data. Whether you are

conducting market research, analyzing transactional data, or exploring new trends,

this package provides the functionalities needed to perform these tasks efficiently.

We encourage you to explore its features, utilize its capabilities, and integrate it into

your data analysis workflows.

References

1. Frank, E., Hall, M. A., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I. H. 2005. Weka:

A machine learning workbench for data mining. In: Data Mining and Knowledge Discovery

Handbook: A Complete Guide for Practitioners and Researchers, Maimon, O. and Rokach, L.

(ed), 1305–1314, Berlin: Springer publications.

2. Apache software foundation. Mahout. https://mahout.apache.org//, 2020. [Online accessed 13-

March-2025].

3. Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter, Thorsten

Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel. 2009. KNIME - the Konstanz information

miner: version 2.0 and beyond. SIGKDD Explor. Newsl. 11, 1 (June 2009), 26–31.

4. Ralf Klinkenberg, Ingo Mierswa, and Simon Fischer. RapidMiner. https://rapidminer.com/,

2001. [Online accessed 13-March-2025].

5. Sebastian Raschka. MLxtend: Providing machine learning and data science utilities and

extensions to Python’s scientific computing stack. In: the Journal of Open Source Software,

3(24), April 2018.

6. Ferenc Borondics. Orange data mining. https://orangedatamining.com/, 1996. [Online accessed

13-March-2025].

7. Laszlo SZATHMARY, Amedeo NAPOLI, Yannick TOUSSAINT. Coron data mining. http://

coron.loria.fr/site/index.php, 2007. [Online accessed 31-August-2022].

https://mahout.apache.org//
https://mahout.apache.org//
https://mahout.apache.org//
https://mahout.apache.org//
https://rapidminer.com/
https://rapidminer.com/
https://rapidminer.com/
https://orangedatamining.com/
https://orangedatamining.com/
https://orangedatamining.com/
http://coron.loria.fr/site/index.php
http://coron.loria.fr/site/index.php
http://coron.loria.fr/site/index.php
http://coron.loria.fr/site/index.php
http://coron.loria.fr/site/index.php
http://coron.loria.fr/site/index.php
http://coron.loria.fr/site/index.php

References 15

8. Frans Coenen. LUCS-KDD. https://cgi.csc.liv.ac.uk/~frans/KDD/Software/, 2013. [Online

accessed 13-March-2025].

9. Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, Azadeh Soltani, Cheng-Wei Wu,

and Vincent S. Tseng. SPMF: A java open-source pattern mining library. In: J. Mach. Learn.

Res., vol. 15(1):3389–3393, jan 2014.

10. Uday Kiran Rage, Veena Pamalla, Masashi Toyoda, Masaru Kitsuregawa. PAMI: An Open-

Source Python Library for Pattern Mining. In: J. Mach. Learn. Res., vol. 25(209), 1–6.

https://cgi.csc.liv.ac.uk/~frans/KDD/Software/
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/

Chapter 2

Handling Big Data: Classification,
Storage, and Processing Techniques

Abstract This chapter offers a comprehensive overview of big data, focusing

on its classification, storage, and processing. The first section explores different

categories of big data based on structure, veracity, attribute values, dimensionality,

and storage. The second section examines popular data storage mechanisms, such

as files and database management systems, and provides Python code for converting

data between CSV and Parquet formats. The third section discusses data processing

using Pandas DataFrames, highlighting their strengths and limitations. The chapter

concludes with a summary, providing essential insights for managing and analyzing

big data effectively.

2.1 Basic Classifications of Big Data

Many real-world applications naturally produce big data. This data is characterized

by volume, velocity, and variety. The term “Big data” represents a wide range of

diverse datasets generated by the combinations of various factors such as structure,

veracity, an object’s values, dimensionality, and storage. Below, we briefly explain

the fundamental forms of big data.

2.1.1 Based on Data Structure

1. Structured Data: Data organized in a fixed format, such as databases and

spreadsheets. Examples include financial records and customer information.

2. Unstructured Data: Data that lacks a predefined structure, such as text files,

multimedia files, and social media content.

3. Semi-structured Data: Data that does not conform to a fixed structure but

contains tags to separate data elements. Examples include JSON and XML files.

4. Graph Data: Data represented in the form of graphs, where entities are depicted

as nodes (vertices), and the relationships between these entities are depicted as

edges (links).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_2
https://doi.org/10.1007/978-981-96-6791-8_2
https://doi.org/10.1007/978-981-96-6791-8_2
https://doi.org/10.1007/978-981-96-6791-8_2
https://doi.org/10.1007/978-981-96-6791-8_2
https://doi.org/10.1007/978-981-96-6791-8_2
https://doi.org/10.1007/978-981-96-6791-8_2
https://doi.org/10.1007/978-981-96-6791-8_2
https://doi.org/10.1007/978-981-96-6791-8_2
https://doi.org/10.1007/978-981-96-6791-8_2
https://doi.org/10.1007/978-981-96-6791-8_2

18 2 Handling Big Data: Classification, Storage, and Processing Techniques

2.1.2 Based on Veracity

1. Certain Data: It is the data that is highly reliable, accurate, and complete. This

data is typically collected from trusted sources with rigorous quality control

measures, making it ideal for critical decision-making processes.

2. Uncertain Data: It represents the data that may be incomplete, inconsistent,

or subject to significant variability. Handling uncertain data requires advanced

cleaning, validation, and analysis techniques to mitigate the risks associated with

its use.

2.1.3 Based on the Attribute’s Value

1. Binary Data: Data in which attributes can take on one of two possible values,

often represented as 0 and 1, but can also be true/false, yes/no, on/off.

2. Nonbinary Data: Data in which attributes can take more than two values,

including categorical, ordinal, interval, and ratio data. This is also known as

multivalued or continuous data.

2.1.4 Based on the Attribute’s Dimensionality

1. Transactional Data: Data containing unordered transactions or itemsets1

2. Temporal Data: Data containing transactions ordered by time

3. Spatial Data: Data in which objects are associated with spatial information, such

as pixels, points, lines, and polygons

2.1.5 Based on Storage

1. Databases: Static data that can be scanned multiple times

2. Data Streams: Continuous data flows that can be scanned only once in real time

Understanding these categories is crucial for users to identify the type of data

they are working with and the patterns that can be discovered. Different data

types and structures significantly impact the methods and algorithms for analysis

and pattern mining. For instance, Fig. 2.1 shows that combining the “structured,”

“certain,” “binary,” “transactional,” and “database” factors results in the generation

of a “structured certain binary transactional database” (or simply, transactional

database), while combining “structured,” “certain,” “binary,” “transactional,” and

“stream” results in a “structured certain binary transactional stream” (or simply,

1 In pattern mining, a set of items is often written as itemset instead of item set.

2.2 Approaches for Storing Big Data 19

Fig. 2.1 Representing the real-world data

transactional stream). This understanding is crucial as pattern mining models and

algorithms designed for handling a particular data type, say transactional databases,

may suffer from correctness issues when applied to other data types, such as

transactional streams.

2.2 Approaches for Storing Big Data

Big data is widely stored as files due to its simplicity in creation and sharing. Most

public data is saved and shared in various file formats, such as Comma Separated

Value (CSV), Joint Photographic Experts Group (JPEG), Tag Image File Format

(TIFF), Network Common Data Form (NetCDF), Avro, Parquet, and Optimized

Row Columnar (ORC). Despite their popularity, files suffer from data integrity,

consistency, redundancy, and security issues. To tackle these problems, companies

store their big data using database management systems (DBMS) such as relational

databases (e.g., MySQL [1] and PostgreSQL [2]), NoSQL databases (e.g., Apache

Cassandra [3] and MongoDB [4]), and newSQL databases (e.g., Google Spanner

[5] and CockroachDB [6]).

Due to the heterogeneity and the complexity of writing generic code for various

DBMS, we confined the algorithms in PAMI to reading the input data as a text file

for simplicity. Currently, the PAMI package provides scripts to convert a CSV file

into a Parquet and vice versa. The generic code for file conversions is provided

below.

Generic Code 1: Converting a CSV File into a Parquet File

1 from PAMI.extras.convert import CSV2Parquet as alg

2

3 obj = alg.CSV2Parquet(inputFile,outputFile,sep)

4 obj.convert()

5

6 print('Runtime: ' + str(obj.getRuntime()))

7 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

8 print('Memory (USS): ' + str(obj.getMemoryUSS()))

20 2 Handling Big Data: Classification, Storage, and Processing Techniques

Example 1: CSV File to Parquet File

import PAMI.extras.convert.CSV2Parquet as cp

obj = cp.CSV2Parquet(inputFile='Transactional_T10I4D100K.csv',\

outputFile='Transactional_T10I4D100K.parquet',sep='\t')

obj.convert()

print('Runtime: ' + str(obj.getRuntime()))

print('Memory (RSS): ' + str(obj.getMemoryRSS()))

print('Memory (USS): ' + str (obj.getMemoryUSS()))

Generic Code 2: Converting a Parquet File into a CSV File

1 from PAMI.extras.convert import Parquet2CSV as alg

2

3 obj = alg.Parquet2CSV(inputFile,outputFile,sep)

4 obj.convert()

5

6 print('Runtime: ' + str(obj.getRuntime()))

7 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

8 print('Memory (USS): ' + str (obj.getMemoryUSS()))

Example 2: Parquet File to CSV

1 import PAMI.extras.convert.Parquet2CSV as cp

2

3 obj = cp.Parquet2CSV(inputFile='Transactional_T10I4D100K.

4 parquet',\

5 outputFile='new_Tran_T10I4D100K.csv',sep='\t')

6 obj.convert()

7

8 print('Runtime: ' + str(obj.getRuntime()))

9 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

10 print('Memory (USS): ' + str(obj.getMemoryUSS()))

2.3 Processing Big Data 21

Fig. 2.2 Elements of a dataframe

2.3 Processing Big Data

A DataFrame is a data structure that organizes data into a two-dimensional table

(see Fig. 2.2) of rows and columns, much like a spreadsheet. It is one of the most

common data structures used in modern data analytics because of its flexibility and

intuitive way of storing and working with data. Popular libraries include Pandas

DataFrame, Apache Spark DataFrame, Dask DataFrame, and Koalas. Pandas

DataFrame is widely used due to its flexibility and powerful data structure for big

data processing, particularly for data manipulation and analysis. However, Pandas

has a limitation in handling large datasets that exceed memory capacity. Users can

address this problem by employing Apache Spark DataFrame, which can handle

larger-than-memory datasets by parallelizing operations and distributing data across

multiple machines.

Currently, the algorithms in PAMI support Pandas DataFrame and Spark

DataFrame. In particular, the sequential algorithms in PAMI support Pandas

DataFrame, while the distributed algorithms based on the map-reduce framework

support Spark DataFrame.

The PAMI package provides several scripts to convert a DataFrame into a specific

database format. Below are the generic Python code and an example.

Generic Code 3: Converting a Dataframe into a Particular Database

1 from PAMI.extras.convert import DF2DB as alg

2 import pandas as pd

3 import numpy as np

4 obj = alg.DF2DB(dataFrame)

5 obj .convert2ParticularDatabase(outputFileName, other

parameters)→֒

6 print('Runtime: ' + str(obj. getRuntime()))

22 2 Handling Big Data: Classification, Storage, and Processing Techniques

7 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

8 print('Memory (USS): ' + str(obj. getMemoryUSS()))

Example 3: Converting a Dataframe into a Transactional Database

1 from PAMI.extras.convert import DF2DB as alg

2 import pandas as pd

3 import numpy as np

4 data = np.random.randint(1, 100, size=(1000, 4))

5 dataFrame = pd.DataFrame(data, columns=['Item1', 'Item2',

'Item3', 'Item4'])→֒

6 obj = alg.DF2DB(dataFrame)

7 obj.convert2TransactionalDatabase(oFile='transactionalDB.csv',

condition='>=', thresholdValue=36)→֒

8 print('Runtime: ' + str(obj.getRuntime()))

9 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

10 print(' Memory (USS): ' + str (obj.getMemoryUSS()))

2.4 Conclusion

This chapter offers a detailed exploration of big data, from its classification

and storage methods to its processing techniques. Understanding these aspects

empowers the readers to select the right pattern mining model and an appropriate

mining algorithm for knowledge discovery.

References

1. Michael Monty Widenius, David Axmark, and Allan Larsson. MySQL. https://www.mysql.

com/, 1995. [Online accessed 13-March-2025].

2. Michael Stonebraker. PostgreSQL. https://www.postgresql.org/, 1986. [Online accessed 13-

March-2025].

3. Avinash Lakshman and Prashant Malik. Apache Cassandra. https://cassandra.apache.org/_/

index.html, 2008. [Online accessed 13-March-2025].

4. Dwight Merriman, Eliot Horowitz, and Kevin Ryan. MongoDB. https://www.mongodb.com/,

2007. [Online accessed 13-March-2025].

5. James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ

Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson

https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/

References 23

Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,

David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Dale Woodford,

Yasushi Saito, Christopher Taylor, Michal Szymaniak, Ruth Wang. Spanner: Google’s Globally-

Distributed Database. In: OSDI, 2012.

6. Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis, Tobias Grieger,

Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea, Amruta Ranade, Ben

Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter Mattis. 2020. CockroachDB:

The Resilient Geo-Distributed SQL Database. In: Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’20). Association for Computing

Machinery, New York, NY, USA, 1493–1509.

Chapter 3

Transactional Databases: Representation,
Creation, and Statistics

Abstract This chapter delves into the concept and practicalities of transactional

databases, which are crucial for managing and analyzing data across various

fields. A transactional database consists of an unordered collection of transactions,

each comprising a set of items represented in binary form. The chapter begins

with a formal definition of transactional databases using set theory, explaining

transactions and patterns. It then addresses practical aspects, including how these

databases are stored and formatted on computing devices, with specific file creation

and management guidelines. The chapter also covers methods for generating

synthetic transactional databases for testing and benchmarking purposes, converting

structured dataframes into transactional databases, and analyzing database statistics,

including transaction length, item frequency, and sparsity. Overall, it provides a

comprehensive overview of both theoretical and practical aspects of transactional

databases, offering valuable data management and analysis insights.

3.1 Introduction

A structured certain binary transactional database, or simply a transactional

database, is a collection of unordered transactions. Each transaction consists of

items, often represented in binary form to indicate their presence or absence. This

data format is prevalent in various real-world scenarios, such as sales, healthcare,

clickstream, and sensor networks. Figure 3.1 visualizes how different factors

combine to form a transactional database, highlighting the complex relationships

involved.

This chapter covers the following key aspects of transactional databases:

1. Theoretical Representation: The formal definition of a transactional database

using set theory

2. Practical Representation: How computer systems implement and store transac-

tional databases

3. Synthetic Database Creation: Techniques for generating synthetic transactional

databases for testing and benchmarking

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_3

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_3
https://doi.org/10.1007/978-981-96-6791-8_3
https://doi.org/10.1007/978-981-96-6791-8_3
https://doi.org/10.1007/978-981-96-6791-8_3
https://doi.org/10.1007/978-981-96-6791-8_3
https://doi.org/10.1007/978-981-96-6791-8_3
https://doi.org/10.1007/978-981-96-6791-8_3
https://doi.org/10.1007/978-981-96-6791-8_3
https://doi.org/10.1007/978-981-96-6791-8_3
https://doi.org/10.1007/978-981-96-6791-8_3
https://doi.org/10.1007/978-981-96-6791-8_3

26 3 Transactional Databases: Representation, Creation, and Statistics

Fig. 3.1 Illustration of factors contributing to the creation of a transactional database

4. Dataframe Conversion: Methods to convert structured dataframes into transac-

tional databases for broader data analysis applications

5. Database Statistics: How to derive statistical details about a transactional

database

3.2 Theoretical Representation

A transactional database [1] is a collection of transactions, each uniquely identified

and containing a specific set of items. Formally:

Let I = {item1, item2, . . . , itemn}., where n ≥ 1., represent the set of all possible

items. An itemset, or pattern, is defined as Y = {item1, item2, . . . , itemk} ⊆ I .,

where 1 ≤ k ≤ n.. This subset Y . represents a specific combination of items that can

occur together in a transaction. A transaction is denoted as tran = {tid, Y }., where

tid ∈ R
+

. is the transaction identifier, a unique number for each transaction. The tid.

ensures distinct transaction identification. The set Y ⊆ I . includes the items present

in this transaction. A transactional database, denoted as T DB ., is a collection of such

transactions, formally defined as T DB = {tran1, tran2, . . . , tranm}., where m ≥ 1.

represents the total number of transactions in the database.

Example 3.1 Consider the set of items I = {Bread, Jam,Butter,Book,Pen}.

available in a supermarket. Table 3.1a and b presents the horizontal and vertical

formats of a transactional database, respectively. This database is based on the

purchases made by five anonymous customers. For simplicity, the concepts will be

explained using the horizontal format shown in Table 3.1a.

In the first transaction, tran1 = {1 : Bread, Jam,Butter}., 1 represents the trans-

action identifier (or t id), and {Bread, Jam,Butter}. represent the items purchased

in that transaction. This transaction indicates that a customer purchased the items

“Bread,” “Jam,” and “Butter,” uniquely identified by transaction identifier 1. Similar

statements can be made about the remaining transactions.

3.3 Practical Representation 27

Table 3.1 Hypothetical

transactional database of a

supermarket

(a) Horizontal format

tid Items

1 Bread, Jam, Butter

2 Bread, Book, Pen

3 Jam, Butter

4 Bread, Jam, Butter, Pen

5 Book, Pen

(b) Vertical format

tid Bread Jam Butter Book Pen

1 1 1 1 0 0

2 1 0 0 1 1

3 0 1 1 0 0

4 1 1 1 0 1

5 0 0 0 1 1

3.3 Practical Representation

A transactional database is usually stored as a file on a computer. To properly create

and manage this file, follow these three rules:

• One Transaction per Line: Each line in the file represents a single transaction.

The line number implicitly acts as the transaction identifier (tid), so it is not

explicitly stored in the file to save space and reduce processing costs.

• Unique Items per Transaction: Each item should appear only once per line.

The items can be listed in any order within the line.

• Items Separated by a Delimiter: Items in a transaction are separated by a

delimiter, such as a space or tab. The PAMI algorithms use a tab as the default

delimiter, but users can choose other delimiters like commas or s paces.

Overall, the format of a transaction in a transactional database is:

. item1〈sep〉item2〈sep〉item3〈sep〉 · · ·

Example 3.2 If the delimiter is a tab, the transactional database shown in

Table 3.1a would look like this:

Bread Jam Butter

Bread Book Pen

Jam Butter

Bread Jam Butter Pen

Book Pen

28 3 Transactional Databases: Representation, Creation, and Statistics

•> Important

“Tab” is the default separator the PAMI package uses to distinguish the items within

the line of a file.

3.4 Creating Synthetic Transactional Databases

The PAMI package offers a powerful and flexible tool for generating synthetic

transactional databases, tailored to various needs. This capability is invaluable for

testing and developing algorithms in data mining and related fields. Users can

customize the database to suit their specific requirements, including the number

of transactions, the total number of items, and the average transaction length.

To illustrate the creation of a synthetic transactional database, consider the fol-

lowing sample code. This example generates a database with 100,000 transactions,

each containing an average of 10 items from a set of 1,000 possible items:

Program 1: Generating Synthetic Transactional Database

1 from PAMI.extras.syntheticDataGenerator import

TransactionalDatabase as db→֒

2

3 obj = db.TransactionalDatabase(

4 databaseSize=100000,

5 avgItemsPerTransaction=10,

6 numItems=1000,

7 sep='\t'

8)

9 obj.create()

10 obj.save('transactionalDatabase.csv')

11 #read the generated transactions into a dataframe

12 transactionalDataFrame=obj.getTransactions()

13 #stats

14 print('Runtime: ' + str (obj.getRuntime()))

15 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

16 print('Memory (USS): ' + str(obj .getMemoryUSS()))

3.6 Knowing the Statistical Details 29

3.5 Deriving a Transactional Database from a Dataframe

The PAMI package enables users to convert a dataframe into a transactional

database, which is ideal for transaction-based data analysis. Below is a Python code

snippet illustrating how to use PAMI for this conversion:

Program 2: Converting a Dataframe into a Transactional Database

1 from PAMI.extras.convert import DF2DB as alg

2 import pandas as pd

3 import numpy as np

4

5 #creating a 1000 x 4 dataframe with random values

6 data = np.random.randint(1, 100, size=(1000, 4))

7 dataFrame = pd.DataFrame(data,

8 columns=['Item1', 'Item2', 'Item3', 'Item4']

9)

10 #converting the database into a transactional database by

11 #considering values greater than or equal to 36

12 obj = alg.DF2DB(dataFrame)

13 obj.convert2TransactionalDatabase(oFile='transactionalDB.csv',

14 condition='>=', thresholdValue=36

15)

16 print('Runtime: ' + str(obj.getRuntime()))

17 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

18 print('Memory (USS): ' + str (obj.getMemoryUSS()))

3.6 Knowing the Statistical Details

The dbStats sub-sub-package in the extras sub-package of PAMI provides users

with statistical details about a transactional database. This functionality is essential

for understanding the properties and characteristics of the database, which can be

crucial for various data analysis tasks. The statistical details provided by dbStats

include:

1. Database size

2. Total number of items in a database

3. Minimum, average, and maximum lengths of the transactions

4. Standard deviation of transactional sizes

5. Variance in transaction sizes

30 3 Transactional Databases: Representation, Creation, and Statistics

6. Sparsity

7. Frequencies of the items

8. Distribution of transactional lengths

Here is an example of how to use the dbStats to obtain the statistics:

Program 3: Deriving the Statistical Details

1 from PAMI.extras.dbStats import TransactionalDatabase as stat

2

3 obj = stat.TransactionalDatabase("transactionalDatabase.csv")

4 obj.run()

5 obj.printStats()

6 obj. plotGraphs()

3.7 Conclusion

This chapter has provided a comprehensive overview of transactional databases,

from their theoretical underpinnings to practical applications. We began with a for-

mal definition of transactional databases, detailing how transactions are structured

and identified using set theory. We then explored the practical aspects of how these

databases are stored and managed on computing devices, including the rules for

formatting and storing transactions.

We discussed methods for generating synthetic transactional databases, which

are crucial for testing and benchmarking various pattern mining algorithms. The

chapter covered techniques for converting structured dataframes into transactional

databases, broadening the data analysis scope. Finally, we examined how to

derive and interpret statistical details of transactional databases to understand their

properties better and optimize their usage.

Understanding these concepts and techniques equips users with the tools to

manage, analyze, and leverage transactional databases in various real-world applica-

tions. The combination of theoretical knowledge and practical skills discussed here

lays the foundation for advanced data analysis.

Reference 31

Reference

1. Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. 2009. Frequent pattern mining

with uncertain data. In Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD ’09). Association for Computing Machinery, New

York, NY, USA, 29–38.

Chapter 4

Pattern Discovery in Transactional
Databases

Abstract Useful patterns that can empower the users to achieve socioeconomic

development lie hidden in the transactional databases. This chapter introduces

various types of user interest-based patterns, such as frequent patterns, correlated

patterns, fault-tolerant patterns, and association rules, that can be discovered from

transactional databases. This chapter also provides sample Python code to find

interesting patterns using the PAMI library.

4.1 Introduction

The previous chapter provided a comprehensive overview of transactional

databases, covering their construction, practical representation, and methods for

deriving statistical insights. This chapter focuses on the analytical dimension, which

involves extracting and analyzing the valuable patterns within the transactional

database.

This chapter delves into several critical aspects of mining transactional

databases:

1. Frequent Pattern Discovery: We will formally define a frequent pattern [1],

discuss the search space involved, explain the Apriori property, and outline the

other algorithms for discovering these patterns.

2. Handling Redundancy Problem in Frequent Patterns: This section addresses

the redundancy problem by exploring techniques such as mining closed frequent

patterns [3], identifying maximal frequent patterns [2], and selecting top-k

frequent patterns [5].

3. Rare Item Problem: We will examine the challenges associated with mining

frequent patterns containing rare items and discuss their implications.

4. Solutions to the Problem: Various strategies to address the rare item problem

will be explored, including mining frequent patterns with multiple minimum

supports [4], discovering correlated patterns [6, 7], deriving relative frequent

patterns [8], and identifying fault-tolerant patterns [9].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_4

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4

34 4 Pattern Discovery in Transactional Databases

5. Association Rule Discovery: Finally, we will cover methods for finding associ-

ation rules from the discovered frequent patterns.

Chapter 3 introduced the foundational concepts of transactional databases,

including key terms such as “pattern,” “transaction,” and “transactional database.”

We will continue using these terms consistently throughout this chapter to stream-

line the discussion and minimize redundancy. For readers who may have missed

the previous chapter, we recommend reviewing at least Sect. 3.2 to familiarize

themselves with the essential concepts and terminologies.

•! Attention
The fundamental concepts of transactional databases were described in Chap. 3.

4.2 Frequent Patterns

Frequent patterns are an important class of regularities that can be identified within

transactional databases. They are foundational for discovering additional patterns

that reflect user interests and behaviors. This section delves into frequent patterns

in detail, emphasizing their basic model, search space, the Apriori property, and

procedure for finding them using the PAMI library. Mastery of frequent patterns is

essential for uncovering key relationships within the data and is the basis for more

advanced pattern mining techniques.

4.2.1 Basic Model

Definition 4.1 (Support of a Pattern) Let P ⊆ I . be a pattern. The support of P .

in a transactional database T DB . is defined as

. sup(P) =
freq(P)

|T DB|
,

where freq(P). denotes the frequency of pattern P . in T DB ., and |T DB|. represents

the total number of transactions in the database.

Example 4.1 Let {Bread, Jam,Butter}. be a pattern. This pattern appears in two

transactions of Table 3.1a. Hence, the f requency of this pattern is 2. The support

of this pattern, i.e., sup({Bread, Jam,Butter}) =
2

5
= 0.4(= 40%).. It means

40% of the customers have purchased the items “Bread,” “Jam,” and “Butter.”

4.2 Frequent Patterns 35

Definition 4.2 (Frequent Pattern) The pattern P is said to be a frequent pattern if

sup(P) ≥ minSup,.where minSup represents the user-specified minimum support .

Example 4.2 If the user-specified minimum support is 30%, i.e., minSup = 30%,.

then the pattern {Bread, Jam,Butter}. is considered as a frequent pattern because

sup({Bread, Jam,Butter}) ≥ minSup..

In the pattern mining literature, the terms f requency and support are often

used interchangeably for clarity and simplicity. In this book, we have chosen to

consistently use the term support to refer to the f requency of a pattern. By doing

so, we aim to streamline explanations and ensure consistency throughout the text,

making it easier for readers to grasp the underlying concepts without confusion.

•> Important

This book uses the terms f requency and sup port interchangeably for brevity.

Definition 4.3 (Problem Definition) Given a transactional database (T DB) and

the user-specified minimum support (minSup) value, discover all frequent patterns

in T DB that have support greater than or equal to the user-specified mi nSup va lue.

4.2.2 Search Space

The space of items in a transactional database raises an itemset lattice (see Fig. 4.1).

This lattice represents the search space of pattern mining. Thus, the search space of

frequent pattern mining (or any related pattern mining) is 2n −1,.where n represents

the total number of items in a database. This vast search space makes pattern mining

a nontrivial and challenging task.

Example 4.3 The transactional database shown in Table 3.1 contains five items.

The itemset lattice for these five items defines the search space for frequent pattern

mining. Consequently, this database’s search space size for frequent pattern mining

Fig. 4.1 The itemset lattice

of a, b, and c items

36 4 Pattern Discovery in Transactional Databases

is 25 − 1 = 32 − 1 = 31.. In other words, a frequent pattern mining algorithm has

to do a traversal among all 31 patterns to find the complete set of frequent patterns.

4.2.3 The Apriori Property

When encountering the problem of enormous search space, the researchers try to

tackle it using the Apriori (or downward closure) property. This property states that

“All non-empty subsets of a frequent pattern must also be frequent.” This property

makes frequent pattern mining practical in real-world applications.

Example 4.4 In Table 3.1, the sup({Bread, Book}) ≥ sup({Bread, Book, P en})..

If the user-specified minSup = 40%,. {Bread, Book}. is not a frequent pattern

as sup({Bread, Book}) �≥ minSup .. Furthermore, {Bread, Book, P en}. cannot

be a frequent pattern as sup({Bread, Book}) ≥ sup({Bread, Book, P en}) �≥

minSup .. Thus, we can stop searching all the supersets of {Bread, Book}. once we

discovered that it is not a frequent pattern.

•> Apriori Property

If a pattern fails a test, its supersets also fail the test.

4.2.4 Finding Frequent P atterns

The literature describes several algorithms for finding frequent patterns, such

as Apriori [1], ECLAT [10, 11], and FP-growth [12]. Although no universally

acceptable best algorithm exists for finding frequent patterns in any transactional

database, most researchers utilize FP-growth as it is generally faster than the other

algorithms. Below is a sample Python script for finding frequent patterns using the

FP-growth algorithm available in the PAMI package.

Program 1: Frequent Pattern Discovery Using FP-Growth

1 from PAMI.frequentPattern.basic import FPGrowth as alg

2

3 obj = alg.FPGrowth(iFile='Transactional_T10I4D100K.csv',

minSup=300, sep='\t')→֒

4 obj.mine()

5 obj. save('frequentPatternsAtMinSupCount300.txt')

6

7 frequentPatternsDF= obj.getPatternsAsDataFrame()

4.2 Frequent Patterns 37

8 print('#Patterns: ' + str(len(frequentPatternsDF)))

9 print('Runtime: ' + str(obj.getRuntime()))

10 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

11 print('Memory (USS): ' + str (obj.getMemoryUSS()))

4.2.5 Popular Variants of Frequent Patterns

Since the objective of the basic frequent pattern model is to find all patterns that

satisfy the user-specified minSup in a transactional database, it often generates too

many patterns, most of which may be redundant or uninteresting depending on the

user and application requirements.

Example 4.5 The basic frequent pattern model not only finds {Bread, Jam,Butter}.

as a frequent pattern in Table 3.1a, but also finds all of its non-empty

subsets, i.e., {Bread}, {Jam}, {Butter}, {Bread, Jam}, {Bread, Butter},. and

{Jam,Butter}., as frequent patterns. Due to redundancy, users may feel these

non-empty subsets of {Bread, Jam,Butter}. uninteresting.

Researchers tried to tackle this problem by finding “maximal frequent patterns,”

“closed frequent patterns,” and “top-k frequent patterns.” We briefly study these

patterns and look at the procedures to find them.

4.2.5.1 Closed Frequent Patter ns

A frequent pattern is a closed frequent pattern if none of its supersets have the same

support as itself. Suppose FP and CFP , respectively, represent the set of frequent

patterns and closed frequent patterns generated from a transactional database at a

given minSup value. In that case, their relation isCFP ⊆ FP . (or |CFP | ≤ |FP |.).

In other words, closed frequent patterns are relatively fewer than the frequent

patterns in a database. More importantly, the closed frequent patterns correspond

to the lossless representation of frequent patterns, as the complete set of frequent

patterns can be regenerated without losing any information from the closed frequent

patterns.

Example 4.6 Let us consider the following three frequent patterns in Table 3.1:

{Bread, Jam}., {Jam,Butter}., and {Bread, Jam,Butter}.. The relation between

these three patterns is: {Bread, Jam}. and {Jam,Butter}. are the subsets of

{Bread, Jam,Butter}.. The support of these patterns, i.e., sup({Bread, Jam}) =

2., sup({Jam,Butter}) = 3,. and sup({Bread, Jam,Butter}) = 2..

Since the support of {Bread, Jam}. is the same as that of its superset

{Bread, Jam,Butter}., we can ignore the frequent pattern {Bread, Jam}. as

it can be regenerated from its superset {Bread, Jam,Butter}. without loss of

38 4 Pattern Discovery in Transactional Databases

any information. We cannot say the same for the patterns {Jam,Butter}. and

{Bread, Jam,Butter}. as both patterns have different support values. Thus, we

consider {Jam,Butter}. and {Bread, Jam,Butter}. as closed frequent patterns.

The procedure for finding closed frequent patterns in a database is shown below.

Program 2: Finding Closed Frequent Patterns

1 from PAMI.frequentPattern.closed import CHARM as alg

2

3 obj = alg.CHARM(iFile='Transactional_T10I4D100K.csv',

minSup=300)→֒

4 obj.mine()

5 obj.save('closedFrequentPatterns.txt')

6

7 print('#Patterns: ' + str(len(obj.getPatternsAsDataFrame())))

8 print('Runtime: ' + str(obj.getRuntime()))

9 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

10 print('Memory (USS): ' + str(obj.getMemoryUSS()))

•> Important

Closed frequent patterns denote the lossless representation of frequent patterns.

4.2.5.2 Maximal Frequent Pattern s

A frequent pattern is a maximal frequent pattern if none of its supersets are frequent.

If FP,CFP ., and MFP , respectively, represent the set of frequent patterns, closed

frequent patterns, and maximal frequent patterns generated from a transactional

database at a given minSup value, then the relation between them is MFP ⊆

CFP ⊆ FP . (or |MFP | ≤ |CFP | ≤ |FP |.). Unlike closed frequent patterns,

maximal frequent patterns correspond to the lossy representation as we cannot

derive the exact support information of all the frequent patterns.

Example 4.7 Continuing the previous example, among the closed frequent patterns

{Jam,Butter}. and {Bread, Jam,Butter}., only {Bread, Jam,Butter}. is con-

sidered as a maximal frequent pattern as none of its supersets represent frequent

patterns. We can generate all of its subset frequent patterns from the maximal

frequent pattern {Bread, Jam,Butter}.. However, we cannot determine their exact

support . Henceforth, maximal frequent patterns represent the lossy representation

of frequent patterns.

4.2 Frequent Patterns 39

•> Important

Maximal frequent patterns denote the lossy representation of frequent patterns.

The procedure for finding maximal frequent patterns in a transactional database

is below .

Program 3: Finding Maximal Frequent Patterns

1 from PAMI.frequentPattern.maximal import MaxFPGrowth as alg

2

3 obj = alg.MaxFPGrowth(iFile='Transactional_T10I4D100K.csv',

minSup=300)→֒

4 obj.mine()

5 obj.save('maximalFrequentPatternsAtMinSupCount100.txt')

6

7 maximalFPsDF= obj.getPatternsAsDataFrame()

8

9 print('#Patterns: ' + str(len(obj.getPatternsAsDataFrame())))

10 print('Runtime: ' + str(obj.getRuntime()))

11 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

12 print('Memory (USS): ' + str(obj. getMemoryUSS()))

4.2.5.3 Top-k Frequent Patter ns

The main issue with the basic model of frequent pattern mining is determining the

right minimum support value for a transactional database. To tackle this problem,

researchers introduced top-k frequent pattern mining, where the mining algorithm

focuses on finding top-k frequently occurring patterns without using the minSup

value. The procedure for finding these patterns in a transactional database is below.

Program 4: Finding Top-k Frequent Patterns

1 from PAMI.frequentPattern.topk import FAE as alg

2

3 obj = alg.FAE(iFile='transactionalDatabase.csv', k=1000)

4 obj.mine()

5 obj.save('topkFrequentPatterns.txt')

40 4 Pattern Discovery in Transactional Databases

6

7 print('#Patterns: ' + str(len(obj.getPatternsAsDataFrame())))

8 print('Runtime: ' + str(obj.getRuntime()))

9 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

10 print('Memory (USS): ' + str (obj.getMemoryUSS()))

4.3 The Rare Item Problem in Frequent Pattern Mining

Since the basic frequent pattern model determines the interestingness of a pattern

using only a single minSup value, it implicitly assumes that all items in the database

have uniform support . However, this is seldom not the case as some items appear

frequently, while others appear relatively infrequent (or rarely) in the database. If the

support values of the items vary widely in the database, then the frequent pattern

model suffers from the following tw o limitations:

1. If we set a high minSup value, we miss the frequent patterns containing rare

items as these items fail to satisfy the increased minSup v alue.

2. We need to set a low minSup value to find the frequent patterns containing fre-

quent and rare items. However, setting a low minSup may cause a combinatorial

explosion, producing too many patterns, most of which may be uninteresting to

the user depending on the user or application requirements.

This dilemma is known as the rare item problem. The example below illustrates

this problem.

Example 4.8 In a supermarket, customers frequently purchase cheap and perish-

able goods, such as bread and butter. These items are bought often and in large

quantities. On the other hand, costly and durable goods, such as wine and whiskey,

are purchased less frequently. While not bought as often, these items generate

significant revenue when sold. Supermarket managers are often more interested

in understanding the purchasing patterns of these rarely bought but high-revenue

items. However, due to the rare item problem, it is challenging to discover patterns

that include these rare items. If a high minSup value is used, patterns involving

wine and whiskey are likely to be missed. If a low minSup value is used, the

supermarket managers are overwhelmed with too many patterns, most of which a re

useless.

4.4 Solutions to the Rare Item Problem

We now discuss some of the famous and widely used solutions presented by the

researchers in the literature to tackle the rare item problem.

4.4 Solutions to the Rare Item Problem 41

4.4.1 Finding Frequent Patterns Using Multiple Minimum

Supports

In this approach, every item in the database is specified a minimum support-like

constraint, known as minimum item support (MIS). Next, the minimum support

of a pattern is defined as the minimum of its items’ MIS values. A pattern is

considered frequent if its support is no less than its items’ lowest MIS value (s ee

Definition 4.4).

Definition 4.4 (Frequent Pattern) A pattern P is a frequent pattern if sup(P) ≥

min(MIS(ij)|∀ij ∈ P),. where MIS(ij). represents the minimum item support of

an item ij ∈ P.. A popular approach to specifying the items’ MIS values is the

percentage-based methodology, which is as follo ws:

.MIS(ij) = max(sup(ij) × β,LS), (4.1)

where β ∈ (0, 1). is a constant that captures the percentage value, and LS represents

the least support a pattern can maintain in the database. The LS parameter removes

highly infrequent (or noisy) items in the data.

Example 4.9 Let the support values of the items “Bread,” “Butter,” “Wine,”

and “Whiskey” in sales data be 1000, 500, 100, and 60, respectively. Let us

set LS = 40., i.e., any pattern, irrespective of its (frequent or rare) items,

must appear at least 40 times in the data. If β = 0.5., then MIS(Bread) =

max(0.5 × 1000, 40) = 500., MIS(Butter) = 250., MIS(Wine) = 50., and

MIS(Whiskey) = 40 (= max(0.5 × 60, 40).. The pattern {Bread, Butter}.

containing the frequently purchased items can be considered frequent if its support

is no less than 250 (= min(500, 250)).. Similarly, the pattern {Wine,Whiskey}.

containing the rarely purchased items can be considered frequent if its support is

no less than 40 (= min(50, 40)).. Thus, depending upon its items, each pattern can

satisfy a different minSup value in the multiple minimum support frequent pattern

model.

We now examine the procedures for specifying the items’ MIS values and

finding frequent patterns using multiple minimum s upports.

Program 5: Specifying MIS Values for the Items

1 from PAMI.extras.calculateMISValues import usingBeta as ub

2 cd = ub.usingBeta(iFile='Transactional_T10I4D100K.csv',

beta=0.5, LS=100) #using default tab separator →֒

3 cd.calculateMIS()

4 cd.save('MIS.txt')

42 4 Pattern Discovery in Transactional Databases

Program 6: Frequent Pattern Discovery

1 from PAMI.multipleMinimumSupportBasedFrequentPattern.basic

import CFPGrowthPlus as alg→֒

2

3 obj = alg.CFPGrowthPlus(iFile='Transactional_T10I4D100K.csv',

MIS='MIS.txt') #using default tab separator→֒

4 obj.mine()

5 obj.save('frequentPatternsMultipleMinimumSupports.txt')

6 print('Total No of patterns: ' +

str(len(obj.getPatternsAsDataFrame())))→֒

7 print('Runtime: ' + str(obj. getRuntime()))

8 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

9 print('Memory (USS): ' + str(obj. getMemoryUSS()))

4.4.2 Correlated Patterns

A significant obstacle to the widespread adoption of frequent pattern mining in

real-world applications is its failure to capture the genuine correlation relationship

among data objects. Researchers have tried discovering correlated patterns using

alternative measures of support to confront the obstacle. Although no universally

accepted best measure exists to judge the interestingness of a pattern, all-confidence

is emerging as a measure that can disclose genuine correlation relationships among

data objects. We now define the model of correlated patterns using the all-confidence

measure.

Definition 4.5 (All-Confidence of a Pattern) The all-confidence of a pattern P ,

denoted as all-conf (P)., can be expressed as the ratio of its support to the maximum

support of an item within it. That is,

.all-conf (P) =
sup(P)

max(sup(ij)|∀ij ∈ P)
. (4.2)

Example 4.10 Consider the frequent pattern {Bread, Jam,Butter}. in Table 3.1a.

The all-confidence of this pattern, i.e.,

.all-conf ({Bread, Jam,Butter}) =
sup({Bread, Jam,Butter})

max(sup(Bread), sup(Jam), sup(Butter))

=
2

max(3, 3, 3)

=
2

3

= 0.666 (= 66.6%).

4.4 Solutions to the Rare Item Problem 43

Definition 4.6 (Correlated Pattern) A frequent pattern P is a correlated pattern

if its all-confidence value is greater than or equal to the user-specified minimum

all-confidence (minAllConf) value. In other words, P is a correlated pattern if

sup(P) ≥ minSup . and allConf (P) ≥ minAllConf ..

Example 4.11 If the user-specified minAllConf = 0.5 (= 50%),. the frequent

pattern {Bread, Jam,Butter}. is said to be a correlated pattern because its all-

confidence value is greater than or equal to the user-specified minAllConf va lue.

The search space for correlated pattern mining is the same as that for frequent

patterns. The Python script to find the correlated patterns in a transactional database

is shown below.

Program 7: Finding Correlated Patterns

1 from PAMI.correlatedPattern.basic import CoMine as alg

2

3 obj = alg.CoMine(iFile='Transactional_T10I4D100K.csv',

minSup=300, minAllConf=0.5)→֒

4 obj.mine()

5 obj.save('correlatedPatterns.txt')

6

7 print('#Patterns: ' + str(len(obj.getPatternsAsDataFrame())))

8 print('Runtime: ' + str(obj.getRuntime()))

9 print(' Memory (RSS): ' + str(obj.getMemoryRSS()))

10 print('Memory (USS): ' + str(obj. getMemoryUSS()))

4.4.3 Relative Frequent Patterns

Relative frequent patterns are a special type of correlated patterns discovered using

the relative support measure instead of the all-confidence measure. We now define

the model of relative frequent patterns.

Definition 4.7 (The Relative Support of a Pattern) The relative support of a

pattern P , denoted as RS(P)., can expressed as the ratio of its support to the

minimum support of its items. That is,

.RS(P) =
sup(P)

min(sup(ij)|∀ij ∈ P)
. (4.3)

Example 4.12 Consider the frequent pattern {Bread, Jam,Butter}. in Table 3.1a.

The relative support of this pattern, i.e.,

44 4 Pattern Discovery in Transactional Databases

. RS({Bread, Jam,Butter}) =
sup({Bread, Jam,Butter})

min(sup(Bread), sup(Jam), sup(Butter))

=
2

min(3, 3, 3)

=
2

3

= 0.666 (= 66.6%).

Definition 4.8 (Relative Frequent Pattern P) A frequent pattern P is said to be a

relative frequent pattern if RS(P) ≥ minRS ., where minRS ∈ (0, 1). represents the

user-specified minimum relative support value.

Definition 4.9 If minRS = 60%,. then the frequent pattern {Bread, Jam, Butter} is

a relative frequent pattern because RS({Bread, Jam,Butter}) ≥ minRS..

The Python script to find the relative frequent patterns in a database is provided

below.

Program 8: Finding Relative Frequent Patterns

1 from PAMI.relativeFrequentPattern.basic import RSFPGrowth as

alg→֒

2

3 obj = alg.RSFPGrowth(iFile='Transactional_T10I4D100K.csv',

minSup=300, minRS=0.6)→֒

4

5 obj.mine()

6 obj.save('relativeFrequentPatterns.txt')

7

8 relativeFrequentPatternsDF= obj.getPatternsAsDataFrame()

9 print('#Patterns: ' + str(len(relativeFrequentPatternsDF)))

10 print('Runtime: ' + str(obj.getRuntime())) #measure the runtime

11 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

12 print('Memory (USS): ' + str(obj. getMemoryUSS()))

4.4.4 Fault-Tolerant Patterns

In real-world data mining scenarios, especially in databases with noisy or incom-

plete data, it is crucial to find patterns that are robust to such imperfections.

Fault-tolerant frequent patterns refer to patterns that remain valid even when some

4.4 Solutions to the Rare Item Problem 45

of the data items are missing, erroneous, or noisy. This concept is essential for

ensuring that discovered patterns are reliable and valuable despite potential data

quality issues.

Fault-tolerant frequent itemsets extend traditional frequent itemset mining by

incorporating tolerance to missing or incorrect items within transactions. This

method modifies the support count mechanism to account for the presence of faults.

In particular, a pattern is considered frequent if it appears in most transactions, even

if some items within the transactions are missing or incorrect.

Definition 4.10 (Fault-Tolerant Frequent Pattern) The length of pattern P , i.e.,

|P | > γ ., where γ > 0. represents the user-specified fault tolerance threshold value.

A transaction T ran = (tid, Y). is said to be FT-containing pattern P iff there e xists

P ′ ⊆ P . such that P ′ ⊆ Y . and |P ′| ≥ (|P | − γ).. The number of transactions in a

database FT-containing pattern P is called the FP-support of P , denoted as ̂sup(P)..

The pattern P is said to be a fault-tolerant frequent pattern if it satisfies the following

two conditions:

1. ̂sup(P) ≥ minSupFT ,.whereminSupFT
. represents the user-specified minimum

fault-tolerant support.

2. For each item ij ∈ P,. sup(ij) ≥ MIS(ij)..

Example 4.13 Consider the pattern {Bread, Jam,Butter}. in Table 3.1. If the

user-specified fault tolerance threshold γ = 1., then {Bread, Jam,Butter}.

can be considered as a candidate to be a fault-tolerant frequent pattern

as |{Bread, Jam,Butter}| ≥ 1.. Any two (=3-1) items of the pattern

{Bread, Jam,Butter}. appear in transactions whose t ids are 1, 3, and 4.

Thus, the FT-support of this pattern is 3. If the user -specified MIS(Bread) =

2,. MIS(Jam) = 2,. MIS(Butter) = 2., and minSupFT = 3,. then

{Bread, Jam,Butter}. is a fault-tolerant frequent pattern as sup(Bread) ≥

MIS(Bread),. sup(Jam) ≥ MIS(Jam),. sup(Butter) ≥ MIS(Butter),. and

sup({Bread, Jam,Butter}) ≥ minSupFT
..

The Python script to find the fault-tolerant frequent patterns in a database is

provided below.

Program 9: Finding Fault-Tolerant Frequent Patterns

1 from PAMI.faultTolerantFrequentPattern.basic import FTFPGrowth

as alg→֒

2

3 obj = alg.FTFPGrowth(iFile='Transactional_T10I4D100K.csv',

minSup=100, itemSup=100, minLength=3, faultTolerance=1,

sep= "\t")

→֒

→֒

4

5 obj.mine()

46 4 Pattern Discovery in Transactional Databases

6

7 print('#Patterns: ' + str(len(relativeFrequentPatternsDF)))

8 print('Runtime: ' + str(obj.getRuntime())) #measure the runtime

9 print('Memory (RSS): ' + str(obj .getMemoryRSS()))

10 print('Memory (USS): ' + str(obj.getMemoryUSS()))

4.5 Discovering Association Rules

Association rule mining is a popular data mining technique for discovering interest-

ing relationships between the (frequent) patterns in the data. An association rule is

of form A → B,. where A and B are patterns such that A ∩ B = ∅.. An association

rule is interesting if its conf idence exceeds the threshold value of the user-specified

minimum confidence (minConf). The conf idence of an association rule A → B .,

i.e., conf (A → B) =
sup(A ∪ B)

sup(B)
..

Example 4.14 Consider the frequent pattern {Bread, Jam,Butter}. in Table 3.1.

An association rule that can be generated from this pattern is {Bread, Jam} →

{Butter}.. The conf idence of this rule, i.e., conf ({Bread, Jam} → {Butter}) =
sup({Bread, Jam,Butter})

sup({Bread, Jam})
=

2

2
= 1 (= 100%).. If the user-specified

minConf = 0.75 (= 75%),. then {Bread, Jam} → {Butter}. is said to be

an interesting association rule mining. This rule says that 100% of the time, the

customers purchase Butter whenever they purchase Bread and Ja m.

The Python code to find interesting association rules from a set of frequent patterns

is provided below.

Program 10: Finding Interesting Association Rules

1 from PAMI.AssociationRules.basic import confidence as alg

2

3 obj = alg.confidence('frequentPatterns.txt', minConf=0.75)

4 obj.mine()

5 obj.printResults()

6 obj.save("associationRulesconfidence.csv")

References 47

4.6 Conclusion

In this chapter, we discovered interesting patterns in transactional databases, focus-

ing on frequent patterns and its variants. Frequent patterns reveal user behaviors

and preferences, forming the basis for practical data mining. We examined key

algorithms such as Apriori, ECLAT, and FP-growth and their efficiency in handling

large datasets.

We also addressed the challenge of pattern overload by exploring variants like

closed, maximal, and top-k frequent patterns. We discussed solutions to the rare item

problem, such as multiple minimum supports, along with techniques for identifying

correlated and relative frequent patterns.

Finally, we covered fault tolerance in pattern mining, emphasizing the need

for robust patterns in the presence of data imperfections. Overall, the discussed

methods and algorithms offer a solid foundation for uncovering valuable insights

from transactional data.

References

1. Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. 2009. Frequent pattern mining

with uncertain data. In Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD ’09). Association for Computing Machinery,

New York, NY, USA, 29–38.

2. Guizhen Yang. 2004. The complexity of mining maximal frequent itemsets and maximal

frequent patterns. In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD ’04). Association for Computing Machinery,

New York, NY, USA, 344–353.

3. Krishna Gade, Jianyong Wang, and George Karypis. 2004. Efficient closed pattern mining

in the presence of tough block constraints. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining (KDD ’04). Association

for Computing Machinery, New York, NY, USA, 138–147.

4. Bing Liu, Wynne Hsu, and Yiming Ma. 1999. Mining association rules with multiple minimum

supports. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining (KDD ’99). Association for Computing Machinery, New York, NY,

USA, 337–341.

5. Abdus Salam and M. Sikandar Hayat Khayal. 2012. Mining top-K frequent patterns without

minimum support threshold. Knowl. Inf. Syst. 30, 1 (January 2012), 57–86.

6. Kim, W.Y., Lee, Y.K., Han, J. (2004). CCMine: efficient mining of confidence-closed

correlated patterns. In: PAKDD (pp. 569–579).

7. Uday Kiran Rage and Masaru Kitsuregawa. 2015. Efficient discovery of correlated patterns

using multiple minimum all-confidence thresholds. J. Intell. Inf. Syst. 45, 3 (December 2015),

357–377.

8. R. Uday Kiran and Masaru Kitsuregawa. 2012. Towards efficient discovery of frequent patterns

with relative support. In Proceedings of the 18th International Conference on Management of

Data (COMAD ’12). Computer Society of India, Mumbai, Maharashtra, IND, 92–99.

9. Jhih-Jie Zeng, Guanling Lee, and Chung-Chi Lee. 2008. Mining fault-tolerant frequent patterns

efficiently with powerful pruning. In Proceedings of the 2008 ACM symposium on Applied

computing (SAC ’08). Association for Computing Machinery, New York, NY, USA, 927–931.

48 4 Pattern Discovery in Transactional Databases

10. Mohammed J. Zaki. 2000. Scalable Algorithms for Association Mining. IEEE Trans. on

Knowl. and Data Eng. 12, 3 (May 2000), 372–390.

11. Mohammed J. Zaki and Karam Gouda. 2003. Fast vertical mining using diffsets. In Proceed-

ings of the ninth ACM SIGKDD international conference on Knowledge discovery and data

mining (KDD ’03). Association for Computing Machinery, New York, NY, USA, 326–335.

12. Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate

generation. SIGMOD Rec. 29, 2 (June 2000), 1–12.

Chapter 5

Temporal Databases: Representation,

Creation, and Statistics

Abstract This chapter provides a comprehensive overview of handling temporal

databases using the PAMI package. Temporal databases, characterized by their

time-ordered transactions, are essential for capturing and analyzing time-based data

across domains such as sensor networks, satellite monitoring, and social media.

We introduce the structure and representation of temporal databases, distinguishing

between nonuniform and uniform types. The chapter covers practical aspects of

working with these databases, including creating synthetic temporal databases

for testing and converting dataframes into temporal databases. Additionally, we

explore how to derive statistical details about temporal databases to understand their

properties and facilitate data analysis. The techniques and tools discussed provide a

solid foundation for managing, analyzing, and extracting insights from time-ordered

transactional data.

5.1 Introduction

A structured certain binary temporal database, or simply a temporal database,

is an organized collection of transactions ordered by time. Each transaction in

this database is uniquely identified and timestamped, providing a chronological

sequence of events or interactions. In particular, a transaction in a temporal database

includes a transaction identifier, a relative timestamp,1 and a set of items, typically

represented in binary form to indicate their presence or absence in the data.

Temporal databases are prevalent in various real-world scenarios where time

and sequence are essential. In sensor networks, each transaction might record the

binary states of sensors at specific time intervals, capturing dynamic environmental

changes. In satellite data, temporal databases can track the presence of certain phe-

nomena over time, enabling detailed temporal analysis of environmental changes.

Social networks also utilize temporal databases to record user interactions and

activities over time, helping to uncover trends and patterns in user behavior.

1 The timestamp of the first transaction must always start with 1.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_5

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_5
https://doi.org/10.1007/978-981-96-6791-8_5
https://doi.org/10.1007/978-981-96-6791-8_5
https://doi.org/10.1007/978-981-96-6791-8_5
https://doi.org/10.1007/978-981-96-6791-8_5
https://doi.org/10.1007/978-981-96-6791-8_5
https://doi.org/10.1007/978-981-96-6791-8_5
https://doi.org/10.1007/978-981-96-6791-8_5
https://doi.org/10.1007/978-981-96-6791-8_5
https://doi.org/10.1007/978-981-96-6791-8_5
https://doi.org/10.1007/978-981-96-6791-8_5

50 5 Temporal Databases: Representation, Creation, and Statistics

Fig. 5.1 Illustration of factors contributing to the creation of a temporal database

Figure 5.1 illustrates the complex interconnections resulting in the generation

of a temporal database. This visualization aids in understanding the intricate rela-

tionships and interactions that underpin the organization and analysis of temporal

data.

Temporal databases can be categorized into two types based on the interval

occurrences of transactions:

• Nonuniform Temporal Databases: Transactions occur irregularly, with varying

time intervals between successive transactions. This type is common in unpre-

dictable scenarios or those dependent on external factors.

• Uniform Temporal Databases [1–3]: Transactions occur at regular, fixed

intervals. A transactional database is a specific type of uniform temporal database

where transactions are recorded at uniform time steps.

•> Important

A transactional database typically represents a uniform temporal database.

Since nonuniform temporal databases cover a broader range of scenarios,

the techniques developed for them can generally be applied to uniform tempo-

ral databases. Therefore, this chapter focuses primarily on nonuniform temporal

databases to discuss pattern mining techniques applicable to various temporal data

types. The chapter cove rs:

1. Theoretical Representation: The formal definition of a temporal database using

set theory

2. Practical Representation: How computer systems implement and store tempo-

ral databases

3. Synthetic Database Creation: Methods for generating synthetic temporal

databases for testing and benchmarking

4. Dataframe Conversion: Techniques for converting structured dataframes into

temporal databases for broader data analysis

5. Database Statistics: Methods for deriving statistical details about a temporal

database

5.2 Theoretical Representation 51

5.2 Theoretical Representation

A temporal database consists of transactions ordered by time. Each transaction

includes a transaction identifier (t id), a timestamp (ts), and a set of items. Formally:

Let I = {item1, item2, . . . , itemn}., where n ≥ 1., represent the set of all possible

items. An itemset, or pattern, is defined as Y = {item1, item2, . . . , itemk} ⊆ I .,

where 1 ≤ k ≤ n.. This subset Y . represents a specific combination of items that

can occur together in a transaction. A transaction is denoted as tran = {tid, ts, Y }.,

where tid ∈ R
+

. is the transaction identifier, a unique number for each transaction.

The tid. ensures distinct transaction identification. The ts ≥ 1. represents the relative

t imestamp of a transaction. Multiple transactions can have the same timestamp.

The set Y ⊆ I . includes the items present in this transaction. A temporal database,

denoted as T empDB ., is a collection of such transactions, formally defined as

T empDB = {tran1, tran2, . . . , tranm}., where m ≥ 1. represents the number of

transactions.

Example 5.1 Consider the set of items I = {Bread, Jam,Butter,Book,Pen}.

available in a supermarket. Table 5.1a and b present the horizontal and vertical

formats of a temporal database, respectively. This database is based on the irregular

purchases made by five anonymous customers. For simplicity, the concepts will be

explained using the horizontal format shown in Table 5.1a.

In the first transaction, tran1 = {1 : 1 : Bread, Jam,Butter}., the number 1

represents the transaction identifier (or t id), 1 is the relative timestamp (or ts),

and {Bread, Jam,Butter}. represent the items purchased in that transaction. This

transaction indicates that the first customer has purchased the items “Bread,” “Jam,”

and “Butter” at the timestamp equal to 1.

Note that multiple transactions can share the same timestamp, and missing

timestamps are possible. This reflects the irregular nature of nonuniform temporal

databases, where events do not occur at regular intervals.

Table 5.1 Hypothetical temporal database of a supermarket

(a) Horizontal format (b) Vertical format

tid ts Items

1 1 Bread, Jam, Butter

2 3 Bread, Book, Pen

3 3 Jam, Butter

4 5 Bread, Jam, Butter, Pen

5 8 Book, Pen

tid ts Bread Jam Butter Book Pen

1 1 1 1 1 0 0

2 3 1 0 0 1 1

3 3 0 1 1 0 0

4 5 1 1 1 0 1

5 8 0 0 0 1 1

52 5 Temporal Databases: Representation, Creation, and Statistics

•> Key Properties of a Temporal Database

• Multiple transactions can share a common timestamp.

• Timestamps need not be continuous in the data.

5.3 Practical Representation

Temporal databases are typically stored as files. To ensure proper creation and

management of these files, follow these rules:

• One Transaction per Line: Each line represents a single transaction. The line

number implicitly serves as the transaction identifier, so it is not explicitly stored

in the file. Only the timestamp and items are recorded.

• Relative Timestamp: Each transaction must have a relative timestamp, starting

with 1. Convert absolute timestamps, such as “2024-01-01 00:00:00,” into

relative timestamps if necessary.

• Unique Items per Transaction: Items must appear only once per line and can

be listed in any order.

• Positioning of Timestamp and Items: Each transaction begins with a timestamp

followed by items. Do not create transactions with only a timestamp and no items.

• Delimiter Separation: Use a delimiter, such as a space or tab, to separate

elements. The default delimiter in PAMI algorithms is the tab, but other

delimiters like commas or spaces can also be used.

The format of a transaction in a temporal database is

. t imestamp〈sep〉item1〈sep〉item2〈sep〉item3〈sep〉 · · ·

Example 5.2 With a tab delimiter, the temporal database in Table 5.1 would look

like this:

1 Bread Jam Butter

3 Bread Book Pen

3 Jam Butter

5 Bread Jam Butter Pen

8 Book Pen

•! Attention
Do not create a temporal database with transactions containing only timestamps.

5.5 Deriving a Temporal Database from a Dataframe 53

•> Important

Tab is the default separator to distinguish the timestamp and items in a line.

5.4 Creating Synthetic T emporal Databases

The PAMI package provides a versatile approach for generating different types

of synthetic temporal databases, which are essential for testing and developing

algorithms in data mining. Users can customize various parameters, such as the

number of transactions, the total number of items, average transaction length,

probability of multiple transactions sharing the same timestamp, and the probability

of skipping transactions at subsequent timestamps.

The following code snippet demonstrates how to generate a synthetic temporal

database with 100,000 transactions, each containing an average of 10 items from a

set of 1,000 possible items:

Program 1: Generating Synthetic Temporal Database

1 from PAMI.extras.syntheticDataGenerator import TemporalDatabase

as db→֒

2

3 obj = db.TemporalDatabase(databaseSize=100000,

avgItemsPerTransaction=10, numItems=1000,

occurrenceProbabilityOfSameTimestamp=0,

occurrenceProbabilityToSkipSubsequentTimestamp=0, sep='\t')

→֒

→֒

→֒

4 obj.create()

5 obj.save('temporalDatabase.csv')

6 #read the generated transactions into a dataframe

7 temporalDataFrame=obj.getTransactions()

8 #stats

9 print('Runtime: ' + str (obj.getRuntime()))

10 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

11 print('Memory (USS): ' + str(obj. getMemoryUSS()))

5.5 Deriving a Temporal Database from a Dataframe

PAMI also allows converting a dataframe into a temporal database, which is ideal

for transaction-based data analysis. Below is a Python code snippet showing how to

perform this conversion:

54 5 Temporal Databases: Representation, Creation, and Statistics

Program 2: Converting a Dataframe into a Temporal Database

1 from PAMI.extras.convert import DF2DB as alg

2 import pandas as pd

3 import numpy as np

4

5 #creating a 5 x 5 dataframe with random values

6 data = np.random.randint(1, 100, size=(5, 5))

7 dataFrame = pd.DataFrame(data,

8 columns=['Item1', 'Item2', 'Item3', 'Item4',

'Item5']→֒

9)

10 # Adding a timestamp column with specific values

11 timestamps = [1, 3, 3, 5, 8]

12 dataFrame.insert(0, 'timestamp', timestamps)

13

14 #converting the database into a temporal database by

15 #considering values greater than or equal to 36

16 obj = alg.DF2DB(dataFrame)

17 obj.convert2TemporalDatabase(oFile='temporalDB.csv',

condition='>=', thresholdValue=36)→֒

18 print('Runtime: ' + str(obj.getRuntime()))

19 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

20 print('Memory (USS): ' + str (obj.getMemoryUSS()))

5.6 Knowing the Statistical Details

The dbStats sub-package in PAMI’s extras module provides detailed statistical

information about a temporal database. This functionality is crucial for under-

standing the properties and characteristics of the database. The statistical details

include:

1. Database size

2. Total number of items in a database

3. Minimum, average, and maximum lengths of the transactions

4. Standard deviation of transactional sizes

5. Variance in transaction sizes

6. Sparsity

7. Frequencies of the items

8. Distribution of transactional lengths

9. Minimum, average, and maximum inter-arrival time of the transactions

References 55

10. Minimum, average, and maximum periodicity of the items

Here is an example of how to use the dbStats to obtain these s tatistics:

Program 3: Deriving the Statistical Details

1 from PAMI.extras.dbStats import TemporalDatabase as stat

2

3 obj = stat.TemporalDatabase("temporalDatabase.csv")

4 obj.run()

5 obj.printStats()

6 obj. plotGraphs()

5.7 Conclusion

This chapter explored the essential aspects of working with temporal databases

using the PAMI package. We began by understanding the structure of temporal

databases, which record transactions in a time-ordered manner and are used in real-

world applications like sensor networks, satellite data, and social networks.

We discussed temporal databases’ theoretical and practical representations, high-

lighting the differences between nonuniform and uniform temporal databases and

their respective uses. This chapter also covered the methods for creating synthetic

temporal databases, demonstrating how to generate and customize databases for

testing and algorithm development.

Additionally, we illustrated how to convert a dataframe into a temporal database,

providing a practical approach to data analysis. Lastly, we highlighted the impor-

tance of statistical details in understanding the properties of temporal databases,

showing how to derive and interpret these statistics to analyze and utilize the data

better.

References

1. Jiawei Han, Wan Gong, and Yiwen Yin. 1998. Mining segment-wise periodic patterns in

time-related databases. In Proceedings of the Fourth International Conference on Knowledge

Discovery and Data Mining (KDD’98). AAAI Press, 214–218.

2. Jiong Yang, Wei Wang, and Philip S. Yu. 2003. Mining Asynchronous Periodic Patterns in Time

Series Data. IEEE Trans. on Knowl. and Data Eng. 15, 3 (March 2003), 613–628.

3. Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, and Young-Koo

Lee. 2009. Discovering Periodic-Frequent Patterns in Transactional Databases. In Proceedings

of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining

(PAKDD ’09). Springer-Verlag, Berlin, Heidelberg, 242–253.

Chapter 6

Pattern Discovery in Temporal Databases

Abstract Periodic-frequent pattern mining is a critical technique for analyzing

temporal data to identify recurring trends and patterns. However, traditional models

face significant challenges, such as the rare item problem, where uniform frequency

and periodicity assumptions can lead to either the exclusion of patterns involving

rare items or the generation of excessive, trivial patterns. Additionally, these models

often fail to capture patterns with partial periodicity, limiting their applicability

in real-world scenarios where periodic behavior may be intermittent. To address

these issues, advancements such as periodic-correlated pattern mining have been

developed, incorporating measures like all-confidence and periodic-all-confidence

to balance the significance of frequent and rare items. Furthermore, partial periodic

pattern discovery models relax strict periodicity constraints, allowing for identifying

patterns with intermittent periodic behavior. These innovations enhance the ability

to extract valuable insights from complex temporal datasets, improving decision-

making and strategic planning.

6.1 Introduction

In the preceding chapter, we discussed temporal databases’ construction, practical

representation, and statistical analysis. Building on this foundation, this chapter

focuses on the analytical aspects of temporal data, specifically extracting and

examining meaningful patterns. One key area of interest is the identification of

periodic-frequent patterns regularities that recur frequently at consistent intervals.

These patterns are crucial for understanding data trends and behaviors over time.

Periodic-frequent patterns can be categorized into two main types based on

their occurrence behavior: perfect periodic-frequent patterns and partial periodic-

frequent patterns. A perfect periodic-frequent pattern appears with high frequency

throughout the dataset and exhibits regular intervals consistently across the entire

timeframe. In contrast, a partial periodic-frequent pattern occurs frequently but

shows periodic behavior only during specific data segments. Due to real-world

complexities and inherent noise, partial periodic-frequent patterns are often more

insightful, offering a nuanced view of periodic behaviors that may not be uniform

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_6

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_6
https://doi.org/10.1007/978-981-96-6791-8_6
https://doi.org/10.1007/978-981-96-6791-8_6
https://doi.org/10.1007/978-981-96-6791-8_6
https://doi.org/10.1007/978-981-96-6791-8_6
https://doi.org/10.1007/978-981-96-6791-8_6
https://doi.org/10.1007/978-981-96-6791-8_6
https://doi.org/10.1007/978-981-96-6791-8_6
https://doi.org/10.1007/978-981-96-6791-8_6
https://doi.org/10.1007/978-981-96-6791-8_6
https://doi.org/10.1007/978-981-96-6791-8_6

58 6 Pattern Discovery in Temporal Databases

throughout the dataset. This chapter focuses on perfect and partial periodic-frequent

patterns, providing methods for users to choose the most suitable pattern mining

technique based on their application requirements.

This chapter delves into several critical areas of mining temporal databases to

uncover these patterns:

1. Periodic-Frequent Pattern Discovery: We will define a (perfect) periodic-

frequent pattern, explore the search space involved in identifying these patterns,

discuss the Apriori property, and outline various algorithms for discovering such

patterns.

2. Handling Redundancy Problem in Periodic-Frequent Patterns: This section

addresses the issue of redundancy in pattern mining. Techniques such as

mining closed periodic-frequent patterns, identifying maximal periodic-frequent

patterns, and selecting top-k periodic-frequent patterns will be discussed to

streamline pattern discovery and reduce redundant findings.

3. Rare Item Problem and Solutions: We will examine the challenges of mining

infrequent or rare items within temporal data. Solutions and strategies for

addressing the rare item problem will be presented to improve the comprehen-

siveness of pattern mining.

4. Finding Partial Periodic Patterns: Different patterns exhibiting partial periodic

behavior will be explored. This includes methods for discovering patterns that

show periodic behavior only in specific periods, offering practical insights into

the variability of periodic trends.

6.2 Periodic-Frequent Patterns

6.2.1 The Basic Model

Chapter 5 introduced the foundational concepts of temporal databases, including

key terms such as “pattern,” “transaction,” and “temporal database.” For clarity

and consistency, we will use these terms throughout this chapter. We recommend

reviewing Sect. 5.2 for readers unfamiliar with these concepts.

Definition 6.1 (Temporal Occurrences of a Pattern) Let T S denote the set of all

timestamps in T empDB. Let P ⊆ I . be a pattern. If P ⊆ Y ., we say P occurs in Y

(or Y contains P). Let tsP
i ∈ T S ., i ≥ 1., denote the occurrence timestamp of pattern

P in a transaction. Let T SP ⊆ T S . denote the set of all timestamps containing P in

T emp DB.

Example 6.1 Consider the pattern {Jam,Butter}. in Table 6.1. This pattern ini-

tially occurs in the first transaction, whose timestamp is 1. Thus, ts
{Jam,Butter}
1 = 1..

Similarly, ts
{Jam,Butter}
2 = 3. and ts

{Jam,Butter}
3 = 5.. The set of all timestamps

containing the pattern {Jam,Butter}., i.e., T S{Jam,Butter} = {1, 3, 5}.. In other

words, the items “Jam” and “Butter” were co-purchased by customers at timestamps

1, 3, and 5.

6.2 Periodic-Frequent Patterns 59

Table 6.1 Temporal

database
tid ts Items

1 1 Bread, Jam, Butter

2 3 Bread, Book, Pen

3 3 Jam, Butter

4 5 Bread, Jam, Butter, Pen

5 8 Butter, Book, Pen

Definition 6.2 (Support of a Pattern) The support of a pattern P , denoted as

sup(P)., is defined as |T SP |.. (Support can also be expressed as a percentage of

the database size.)

Example 6.2 The support of the pattern {Jam,Butter}. in Table 6.1 is given by

sup({Jam,Butter}) = |T S{Jam,Butter}| = |{1, 3, 5}| = 3. or 60%(= 3×100
5

)..

Definition 6.3 (Frequent Pattern) A pattern P is said to be frequent if sup(P) ≥

minSup ., where minSup represents the user-specified minimum support v alue.

Example 6.3 If the user-specified minSup = 2., then {Jam,Butter}. is a frequent

pattern because sup({Jam,Butter}) ≥ minSup ..

Definition 6.4 (Inter-Arrival Times of a Pattern) Let tsP
a . and tsP

b . (with a <

b.) represent two consecutive occurrences of the pattern P in T empDB. An inter-

arrival time of P , denoted as iatPk ., is defined as tsP
b −tsP

a .. The set of all inter-arrival

times of P is denoted as IAT P = {iatP1 , iatP2 , · · · , iatPx }., where x = |T SP | − 1..

Example 6.4 Consider the pattern {Jam,Butter}., which appears at timestamps 1,

3, and 5. The first inter-arrival time for this pattern, i.e., iat
{Jam,Butter}
1 = 3−1 = 2..

Similarly, the second inter-arrival time of this pattern, i.e., iat
{Jam,Butter}
2 = 5−3 =

2.. The set of all inter-arrival times of {Jam,Butter}., i.e., IAT {Jam,Butter} = {2, 2}..

Definition 6.5 (Periodicity of a Pattern) Let tsini = 0. and tsf in = max(tsi |

∀tsi ∈ T S). be the initial and final timestamps of the database, respectively. The

time consumed for the initial appearance of P in the temporal database T emp DB

is iatPconsumed = (tsP
1 − tsini).. The time elapsed after the final appearance of P in

T empDB is iatPelapsed = (tsf in − max(tsP
k | ∀tsP

k ∈ T SP)).. The periodicity of P

in T empDB, denoted as per(P)., is defined as max(iatPq | ∀{IAT P ∪iatPconsumed ∪

iatPelapsed})..

Example 6.5 For the temporal database shown in Table 6.1, the initial and final

timestamps are 0 and 8, respectively. Thus, tsini = 0. and tsf in = 8.. The time

taken for the initial occurrence of the pattern {Jam,Butter}. is iat
{Jam,Butter}
consumed =

(ts
{Jam,Butter}
1 − tsini) = 1 − 0 = 1.. The time elapsed after the final occurrence

of {Jam,Butter}. is iat
{Jam,Butter}
elapsed = (tsf in − max(T S{Jam,Butter})) =

8 − 5 = 3.. The periodicity of {Jam,Butter}. is per({Jam,Butter}) =

max(IAT {Jam,Butter} ∪ iat
{Jam,Butter}
consumed ∪ iat

{Jam,Butter}
elapsed) = max(2, 2, 1, 3) = 3..

60 6 Pattern Discovery in Temporal Databases

Definition 6.6 (Periodic-Frequent Pattern) A frequent pattern P is considered

a periodic-frequent pattern if per(P) ≤ maxP rd ., where maxP rd is the user-

specified maximum periodicity threshold v alue.

Example 6.6 If the user-specified maxP rd = 3., the frequent pattern

{Jam,Butter}. is a periodic-frequent pattern because per({Jam,Butter}) ≤

maxP rd ..

Definition 6.7 (Problem Definition) Given a temporal database (T empDB) and

the user-specified minimum support (minSup) and maximum periodicity (maxP rd)

values, the problem is to discover all periodic-frequent patterns in T DB that have

support no less than minSup and periodicity no more than maxP rd.

Note The inter-arrival times and periodicity of a pattern can also be expressed as

percentages of tsf in .. However, the periodicity is expressed in counts throughout this

book for brevity.

6.2.2 Search Space and Apriori Property

In periodic-frequent pattern mining, the goal is to identify frequent patterns in a

dataset that follow a regular, repeating interval. To achieve this, it is necessary to

search through many potential patterns. The search space and the Apriori property

are crucial concepts in managing this process.

6.2.2.1 Search Space

1. Itemset Lattice: The itemset lattice represents the search space for periodic-

frequent pattern mining. An itemset lattice includes all possible combinations of

items from the dataset. For a database with |I |. items, the itemset lattice contains

all possible itemsets of size one up to size |I |..

2. Size of Search Space: The total number of possible itemsets is 2|I | − 1.. This

is because each item can either be included in a pattern or not, leading to 2|I |
.

possible combinations. We subtract 1 to exclude the empty set. For instance, if

there are five items in the database, there are 25 − 1 = 31. possible non-empty

itemsets. (See Chap. 4 for more information.)

3. Challenge: Directly searching through all these itemsets is computationally

infeasible, especially as the number of items increases. The number of potential

patterns grows exponentially with the number of items, necessitating strategies

to efficiently reduce the search space.

6.2.2.2 Apriori Property

1. Definition: The Apriori property is a fundamental principle used to reduce the

search space in frequent pattern mining. It states that “all non-empty subsets of a

periodic-frequent pattern must also be periodic-frequent patterns.”

6.2 Periodic-Frequent Patterns 61

2. Implication: If a pattern is identified as a periodic-frequent pattern, then every

subset of this pattern must also be periodic frequent. For example, if the pattern

{A,B,C}. is found to be periodic frequent, then the patterns {A,B}., {A,C}., and

{B,C}.must also be periodic frequent.

3. Utility: We can significantly reduce the number of candidate patterns to evaluate

by applying this property. Instead of checking all possible patterns, we focus only

on supersets of known periodic-frequent patterns. This reduction in the search

space is because if a large itemset is periodic frequent, all of its smaller subsets

must be periodic frequent. Conversely, if a subset is not periodic frequent, any

larger itemset containing it cannot be periodic frequent either.

4. Example: Suppose we are searching for patterns in a dataset of five items and

have identified that {A,B,C}. as a periodic-frequent pattern. According to the

Apriori property, any sub-pattern that includes {A,B,C}., such as {A,B,C}.,

must also be periodic frequent if it meets the support and periodicity criteria.

This allows us to avoid evaluating larger itemsets that do not contain periodic-

frequent subsets, focusing our efforts on more promising candidates.

In summary, the Apriori property is a critical tool for efficiently mining periodic-

frequent patterns. By leveraging this property, we can reduce the vast search space

and make identifying meaningful patterns more manageable.

6.2.3 Finding Periodic-Frequent Patterns

Several algorithms have been proposed in the literature for finding periodic-frequent

patterns, including PFP-growth [1], PFP-growth++ [2], and PF-ECLAT [3]. While

there is no universally accepted best algorithm for finding periodic-frequent patterns

across all temporal databases, the PFP-growth++ algorithm is often preferred due to

its generally faster performance than other algorithms. Below is an example Python

script demonstrating how to find periodic-frequent patterns using the PFP-growth++

algorithm, which is available in the PAMI package.

Program 1: Finding Periodic-Frequent Patterns

1 from PAMI.periodicFrequentPattern.basic import PFPGrowthPlus as

alg # Import the algorithm→֒

2

3 obj = alg.PFPGrowthPlus(iFile='Temporal_T10I4D100K.csv',

minSup=100, maxPer='2000', sep='\t') # Initialize→֒

4 obj.mine()

5 obj.save('periodicFrequentPatterns.txt')

6

7 patternsDF = obj. getPatternsAsDataFrame()

62 6 Pattern Discovery in Temporal Databases

8 print('Patterns: ' + str(len(patternsDF)))

9 print('Runtime: ' + str(obj.getRuntime()))

10 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

11 print('Memory (USS): ' + str (obj.getMemoryUSS()))

6.3 Popular Variants of Periodic-Frequent Patterns

The primary goal of the basic periodic-frequent pattern model is to identify all

patterns that meet the user-specified minSup and maxPrd criteria in a temporal

database. However, this approach can generate many patterns, which may be

redundant or of limited interest depending on the user’s requirements or specific

application needs.

Example 6.7 The basic periodic-frequent pattern model not only identifies

{Jam,Butter}. as a periodic-frequent pattern in Table 3.1a but also considers all

of its non-empty subsets, i.e., {Jam}. and {Butter}., as periodic-frequent patterns.

Due to this redundancy, users might find these subsets, {Jam}. and {Butter}., less

attractiv e.

To address this issue, researchers have developed methods to find closed

periodic-frequent patterns [4], maximal periodic-frequent patterns [5], and top-k

rperiodic-frequent patterns [6]. This section will briefly explore these variants and

discuss the methods for identifying them.

6.3.1 Closed Periodic-Frequent Patterns

A periodic-frequent pattern is considered a closed periodic-frequent pattern if none

of its supersets share the same support and periodicity. Let PFP and CPFP denote

the sets of periodic-frequent and closed periodic-frequent patterns, respectively,

generated from a temporal database with given values of minSup and maxP rd.

The relationship between these sets isCPFP ⊆ PFP . (or equivalently, |CPFP | ≤

|PFP |.). In other words, closed periodic-frequent patterns are smaller in number

than periodic-frequent patterns. More importantly, closed periodic-frequent patterns

provide a lossless representation of periodic-frequent patterns, meaning that the

complete set of periodic-frequent patterns can be reconstructed from the closed

periodic-frequent patterns without losing any information.

Example 6.8 Consider the following periodic-frequent patterns in Table 6.1:

{Jam}., {Butter}., and {Jam,Butter}.. The relationships among these patterns

are as follows: {Jam}. and {Butter}. are subsets of {Jam,Butter}.. The support

values for these patterns are: sup({Jam}) = 3., sup({Butter}) = 4., and

sup({Jam,Butter}) = 3.. The periodicity values are: per({Jam}) = 3.,

6.3 Popular Variants of Periodic-Frequent Patterns 63

per({Butter}) = 3., and per({Jam,Butter}) = 3.. Since the support and

periodicity of {Jam}. are the same as those of its superset {Jam,Butter}., {Jam}.

can be disregarded as it is redundant and can be derived from {Jam,Butter}.

without any loss of information. However, {Butter}. and {Jam,Butter}. have

different support values, so {Butter}. cannot be derived from {Jam,Butter}.

without loss of information. Therefore, {Butter}.and {Jam,Butter}.are considered

closed periodic-frequent patterns.

The procedure for finding closed periodic-frequent patterns in a temporal

database is outlined below:

Program 2: Finding Closed Periodic-Frequent Patterns

1 from PAMI.periodicFrequentPattern.closed import CPFPMiner as

alg→֒

2

3 obj = alg.CPFPMiner(iFile='Temporal_T10I4D100K.csv',

minSup=100, maxPer=2000, sep='\t')→֒

4

5 obj.mine()

6 obj.save('closedPeriodicFrequentPatterns.txt')

7

8 patternsDF = obj.getPatternsAsDataFrame()

9 print('Patterns: ' + str(len(patternsDF)))

10 print('Runtime: ' + str(obj.getRuntime()))

11 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

12 print('Memory (USS): ' + str(obj.getMemoryUSS()))

•> Important

Closed periodic-frequent patterns represent a lossless subset of periodic-frequent

patterns.

6.3.2 Maximal Periodic-Frequent P atterns

A periodic-frequent pattern is considered a maximal periodic-frequent pattern

if none of its supersets are periodic-frequent. Let PFP , CPFP , and MPFP

denote the sets of periodic-frequent patterns, closed periodic-frequent patterns,

and maximal periodic-frequent patterns, respectively, generated from a temporal

64 6 Pattern Discovery in Temporal Databases

database with given values of minSup and maxP rd. The relationship among

these sets is given by MPFP ⊆ CPFP ⊆ PFP . (or equivalently, |MPFP | ≤

|CPFP | ≤ |PFP |.). Unlike closed periodic-frequent patterns, maximal periodic-

frequent patterns offer a lossy representation because they do not retain the exact

support and periodicity information of all the periodic-frequent patterns.

Example 6.9 Considering the previous example, consider the closed periodic-

frequent patterns {Butter}. and {Jam,Butter}.. Among these, {Jam,Butter}. is

a maximal periodic-frequent pattern because none of its supersets are periodic

frequent. Although we can derive all of its subset periodic-frequent patterns from

{Jam,Butter}., the exact support and periodicity values for these subsets

are not determinable. Thus, maximal periodic-frequent patterns represent a lossy

approximation of the complete set of frequent patterns.

•> Important

Maximal periodic-frequent patterns represent a lossy subset of the frequent patterns.

The procedure for finding maximal periodic-frequent patterns in a temporal

database is outlined below :

Program 3: Finding Maximal Periodic-Frequent Patterns

1 from PAMI.periodicFrequentPattern.maximal import MaxPFGrowth

as alg→֒

2

3 obj = alg.MaxPFGrowth(iFile='Temporal_T10I4D100K.csv',

minSup=100, maxPer=2000, sep='\t')→֒

4

5 obj.mine()

6 obj.save('maximalPeriodicFrequentPatterns.txt')

7

8 patternsDF = obj.getPatternsAsDataFrame()

9 print('Patterns: ' + str(len(patternsDF)))

10 print('Runtime: ' + str(obj.getRuntime()))

11 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

12 print('Memory (USS): ' + str(obj. getMemoryUSS()))

6.4 Main Issues of Periodic-Frequent Pattern Mining 65

6.3.3 Top-k Periodic-Frequent P atterns

A common challenge with traditional periodic-frequent pattern mining is deter-

mining the appropriate minimum support and maximum periodicity values for a

given temporal database. To address this challenge, researchers have developed

the concept of top-k periodic-frequent pattern mining. This approach focuses on

identifying the top-k patterns that exhibit the lowest periodicity in the dataset,

regardless of their support values. This method is beneficial when the goal is to

discover the most significant patterns based on periodicity rather than predefined

thresholds.

The following Python script demonstrates how to find the top-k periodic-frequent

patterns using the PAMI package:

Program 4: Finding Top-k Periodic-Frequent Pattern s

1 from PAMI.periodicFrequentPattern.topk.kPFPMiner import

kPFPMiner as alg→֒

2

3 obj = alg.kPFPMiner(iFile='Temporal_T10I4D100K.csv', k=1000,

sep='\t')→֒

4 obj.mine()

5

6 obj.save('topkPeriodicFrequentPatterns.txt')

7

8 kPatternsDF = obj.getPatternsAsDataFrame()

9 print('#Patterns: ' + str(len(kPatternsDF)))

10 print('Runtime: ' + str(obj.getRuntime()))

11 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

12 print('Memory (USS): ' + str(obj.getMemoryUSS()))

6.4 Main Issues of Periodic-Frequent Pattern Mining

The basic model of periodic-frequent pattern mining faces two significant chal-

lenges:

1. The Rare Item Problem: The basic model of periodic-frequent patterns relies

on a single minSup and maxP rd to assess the interestingness of patterns across

the entire dataset. This approach implicitly assumes that all items have uniform

frequencies or similar temporal occurrence behaviors, which is rarely true in

real-world applications. In many scenarios, some items appear frequently, while

66 6 Pattern Discovery in Temporal Databases

others occur infrequently. This variation in occurrence behavior leads to two

potential problems:

• Setting a high minSup or a low maxP rd value may result in missing

periodic-frequent patterns that contain rare items, as these items often do not

meet the s pecified constraints.

• To capture patterns involving frequent and rare items, one might need to set a

low minSup and a high maxP rd. However, this can lead to a combinatorial

explosion, generating an overwhelming number of patterns, many of which

may be uninteresting or irrelevant to the user or application.

This dilemma is commonly referred to as the “rare item problem.”

2. Inability to Find Partially Periodically Occurring Patterns: The basic

periodic-frequent pattern model enforces a strict requirement that all inter-

arrival times of a pattern must be within the user-specified maxP rd threshold.

This rigid criterion can cause the model to overlook interesting patterns that

exhibit partial periodic behavior in the data, thereby missing potentially valuable

insights.

In the following sections, we will explore various approaches described in the

literature to address these two issues.

6.5 Addressing the Rare Item Problem

The rare item problem, a significant challenge in periodic-frequent pattern mining,

arises due to the inherent assumption that all items in a dataset exhibit similar

frequencies and temporal behaviors. This assumption is often violated in real-world

datasets, where some items appear frequently, while others occur only sporadically.

To address this problem, researchers have introduced the concept of periodic-

correlated pattern mining. This approach extends the basic periodic-frequent pattern

model by incorporating additional constraints that account for both the frequency

and the correlation of items within a pattern, allowing for the identification of

patterns involving rare items without overwhelming the user with trivial results.

6.5.1 Periodic-Correlated Pattern Mining

Periodic-correlated pattern mining [7] utilises the concept of correlation between

items within a pattern, alongside the traditional support and periodicity constraints.

This method ensures that patterns containing rare items are not overlooked due to the

global application of a single minimum support and maximum periodicity threshold

values on the entire dataset. In particular, this model does so by incorporating an all-

confidence measure, which balances the influence of frequent and rare items within

the same pattern.

Definition 6.8 (Periodic-Correlated Pattern) A pattern P is considered a

periodic-correlated pattern if it satisfies the following constraints:

6.5 Addressing the Rare Item Problem 67

.sup(P) ≥ minSup. (6.1)

allConf (P) ≥ minAllConf . (6.2)

per(P) ≤ maxP er. (6.3)

PC(P) ≤ maxPeriodicAllConf. (6.4)

Here, the different terms are defined as follows:

• sup(P).: The support of the pattern P , which must be greater than or equal to a

user-specified minimum support threshold, minSup.

• allConf (P).: The all-confidence measure, defined as:

. allConf (P) =
sup(P)

max(sup(ij) | ∀ij ∈ P)
,

which must be greater than or equal to a minimum all-confidence threshold,

minAllConf . This measure accounts for the balance between the frequent and

rare items within the pattern.

• per(P).: The periodicity of the pattern P , which must be less than or equal to a

user-specified maximum periodicity threshold, maxPer .

• PC(P).: The periodic-all-confidence measure, defined as:

. PC(P) =
| ÎAT P |

min(sup(ij) | ∀ij ∈ P)
− 1,

which must be less than or equal to a maximum periodic-all-confidence thresh-

old, maxPeriodicAllConf . Here, ÎAT P ⊆ IAT P
. represents the set of

inter-arrival times that are less than a user-specified maximum inter-arrival time.

The constraints on the all-confidence measure and the periodic-all-confidence

measure ensure that the pattern is not only frequent and periodic but also that it

reflects a meaningful correlation between its constituent items. This approach allows

for the inclusion of patterns that involve rare items without being overwhelmed by

trivial or irrelevant patterns.

6.5.2 Implementation Example: Finding Periodic-Correlated

Patterns

The following Python code illustrates how periodic-correlated patterns can be

identified within a temporal database. It uses the PAMI package to find such

patterns. This example employs the EPCPGrowth algorithm, which is designed to

mine periodic-correlated patterns by considering both the frequency and periodicity

of items and their correlation.

68 6 Pattern Discovery in Temporal Databases

Program 5: Finding Periodic-Correlated Patterns

1 from PAMI.periodicCorrelatedPattern.basic import EPCPGrowth as

alg→֒

2

3 # Initialize the EPCPGrowth algorithm with the appropriate

parameters→֒

4 obj = alg.EPCPGrowth(

5 iFile='Temporal_T10I4D100K.csv',

6 minSup=100,

7 minAllConf=0.7,

8 maxPer=2000,

9 maxPerAllConf=1.5,

10 sep='\t')

11

12 # Mine the periodic-correlated patterns

13 obj.mine()

14

15 # Save the patterns to a file

16 obj.save('correlatedPeriodicFrequentPatterns.txt')

17

18 # Retrieve the patterns as a DataFrame

19 correlatedPFPs = obj.getPatternsAsDataFrame()

20

21 # Display summary information

22 print('#Patterns: ' + str(len(correlatedPFPs)))

23 print('Runtime: ' + str(obj.getRuntime()))

24 print('Memory (RSS): ' + str(obj. getMemoryRSS()))

25 print('Memory (USS): ' + str (obj.getMemoryUSS()))

6.6 Finding Partial Periodic Patterns

In many real-world applications, certain patterns may not exhibit consistent periodic

behavior throughout a temporal database. Instead, these patterns might show

periodicity only during certain intervals or under specific conditions. To identify

such patterns, researchers have developed various models for mining partial periodic

patterns. This section explores three prominent models for discovering interesting

patterns that exhibit partial periodic behavior.

6.6 Finding Partial Periodic Patterns 69

6.6.1 Partial Periodic-Frequent Patterns

Partial periodic-frequent patterns [8] are a generalization of periodic-frequent

patterns. They relax the strict requirement that a pattern must consistently occur

within a specified period throughout the entire database. Instead, they allow patterns

to be identified as periodic frequent even if they only exhibit periodic behavior for

a portion of the time.

Definition 6.9 (Periodic Ratio of a Pattern) The periodic ratio of a pattern P ,

denoted as PR(P)., quantifies the proportion of P ’s occurrences in the database that

are periodic. It is defined as follows:

.PR(P) =
|ÎAT P |

sup(P) − 1
, (6.5)

where sup(P). is the support of pattern P , and |ÎAT P |. is the number of inter-arrival

times within the user-specified maximum periodicity threshold.

Definition 6.10 (Partial Periodic-Frequent Pattern) A pattern P is considered a

partial periodic-frequent pattern if it satisfies the following conditions:

.sup(P) ≥ minSup. (6.6)

per(P) ≤ maxP er. (6.7)

PR(P) ≥ minPR, (6.8)

where minSup is the minimum support threshold, maxPer is the maximum

periodicity threshold, and minPR ∈ (0, 1). is the user-specified minimum periodic

ratio. The minimum periodic ratio ensures that a pattern is considered interesting

only if it maintains a certain level of periodic occurrences in the database.

To find all partial periodic-frequent patterns in a temporal database, you can use

the following Python code. This code utilizes the GPFgrowth algorithm from the

PAMI package to mine patterns that meet the specified support, periodicity, and

periodic ratio constraints.

Program 6: Finding Partial Periodic-Frequent Patterns

1 from PAMI.partialPeriodicFrequentPattern.basic \

2 import GPFgrowth as alg

3

4 # Initialize the GPFgrowth algorithm with the required

parameters→֒

5 obj = alg .GPFgrowth(

70 6 Pattern Discovery in Temporal Databases

6 iFile='Temporal_T10I4D100K.csv',

7 minSup=100,

8 maxPer=2000,

9 minPR=0.5,

10 sep='\t')

11

12 # Mine the partial periodic-frequent patterns

13 obj.mine()

14

15 # Save the patterns to a file

16 obj.save('partialPeriodicFrequentPatterns.txt')

17

18 # Retrieve the patterns as a DataFrame

19 PPFPs = obj.getPatternsAsDataFrame()

20

21 # Display summary information

22 print('#Patterns: ' + str(len (PPFPs)))

23 print('Runtime: ' + str(obj.getRuntime()))

24 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

25 print ('Memory (USS): ' + str (obj.getMemoryUSS()))

6.6.2 Partial Periodic Patterns

In certain temporal databases, patterns may not occur with consistent periodicity

throughout the dataset but may still exhibit periodic behavior over specific intervals.

To capture such behavior, the concept of partial periodic patterns [9] is introduced.

This approach identifies patterns that may not be frequent in the entire dataset but

occur periodically within certain segments.

Definition 6.11 (Periodic Support of a Pattern) The periodic support of a pattern

P , denoted as PS(P)., is the count of occurrences where P is considered periodic.

An occurrence of P is considered periodic if the inter-arrival time (the time between

consecutive occurrences) is within the user-specified maximum inter-arrival time

(maxIAT). Fo rmally,

.PS(P) = |ÎAT P |, (6.9)

where ÎAT P ⊆ IAT P
. represents the subset of inter-arrival times that are less than

or equal to the user-defined maxIAT .

Definition 6.12 (Partial Periodic Pattern) A pattern P is defined as a partial

periodic pattern if its periodic support PS(P). meets or exceeds a user-specified

threshold, known as the minimum periodic support (minPS). In other words,

6.6 Finding Partial Periodic Patterns 71

.PS(P) ≥ minPS. (6.10)

This means that P must have a sufficient number of periodic occurrences within the

dataset to be considered a partial periodic pattern.

Definition 6.13 (Problem Definition) Given a temporal database T empDB, a

maximum inter-arrival time maxIAT , and a minimum periodic support minPS,

the task is to find all patterns P in T empDB such that the periodic support PS(P).

is no less than minPS.

The partial periodic pattern mining search space is 2|I | − 1., where |I |. represents

the total number of distinct items in the database. Given the vast size of this search

space, it is crucial to utilize the Apriori property, which states that all non-empty

subsets of a partial periodic pattern must also be partial periodic patterns. This

property allows for effective search space pruning, enabling efficient discovery of

partial periodic patterns.

The Python code provided below demonstrates how to implement the discovery

of partial periodic patterns using the PAMI package. The PPPGrowth algorithm is

employed to identify patterns that meet the specified periodic support c riteria.

Program 7: Finding Partial Periodic Patterns

1 from PAMI.partialPeriodicPattern.basic import PPPGrowth as alg

2

3 # Initialize the PPPGrowth algorithm with necessary parameters

4 obj = alg.PPPGrowth(iFile='Temporal_T10I4D100K.csv', minPS=100,

period=200, sep='\t')→֒

5

6 # Mine the partial periodic patterns

7 obj.mine()

8

9 # Save the patterns to a file

10 obj.save('partialPeriodicPatterns.txt')

11

12 # Retrieve the patterns as a DataFrame

13 PPFPs = obj.getPatternsAsDataFrame()

14

15 # Display summary information

16 print('#Patterns: ' + str(len(PPFPs)))

17 print('Runtime: ' + str(obj.getRuntime()))

18 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

19 print('Memory (USS): ' + str (obj.getMemoryUSS()))

72 6 Pattern Discovery in Temporal Databases

6.6.3 Recurring Patterns

Recurring patterns [10] are a distinct subset of periodic patterns that display periodic

behavior within specific time intervals. These patterns are beneficial when certain

items or itemsets are consistently purchased during particular periods, such as

specific hours of the day, days of the week, or seasons of the year.

For example, consider a recurring pattern like {greenT ea,Obento} {[11 :

00, 14 : 00], [16 : 00, 21 : 00]}.. This pattern indicates that the combination of

green tea and Obento is frequently purchased during lunch (11:00 AM to 2:00 PM)

and dinner (4:00 PM to 9:00 PM) time intervals. Such patterns are valuable for

businesses to understand customer behavior and optimize inventory or promotional

strategies during peak hours.

The following Python code demonstrates using the PAMI package to identify

recurring patterns within a temporal database.

Program 8: Finding Recurring Patterns

1 from PAMI.recurringPattern.basic import RPGrowth as alg

2

3 # Initialize the RPGrowth algorithm with appropriate parameters

4 obj = alg.RPGrowth(iFile='Temporal_T10I4D100K.csv', minPS=20,

maxPer=100, minRec=1, sep='\t') # Separator used in the

data file

→֒

→֒

5

6 # Mine the recurring patterns

7 obj.mine()

8

9 # Save the patterns to a file

10 obj.save('recurringPatterns.txt')

11

12 # Retrieve the patterns as a DataFrame

13 recurringPatterns = obj.getPatternsAsDataFrame()

14

15 # Display summary information

16 print('#Patterns: ' + str(len(recurringPatterns)))

17 print('Runtime: ' + str(obj.getRuntime()))

18 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

19 print('Memory (USS): ' + str (obj.getMemoryUSS()))

References 73

6.7 Conclusion

Periodic-frequent pattern mining is crucial for uncovering trends in temporal data,

but it faces challenges such as the rare item problem and the inability to identify

partially periodic patterns. The rare item problem stems from the assumption of

uniform item frequencies, which can either lead to missing important patterns

or generating excessive, irrelevant results. To overcome this, periodic-correlated

pattern mining introduces measures like all-confidence and periodic-all-confidence

to balance the influence of frequent and rare items, ensuring that valuable patterns

are not overlooked. Additionally, traditional models struggle to capture patterns

with intermittent periodicity, which partial periodic pattern discovery addresses by

relaxing strict periodicity requirements. These advancements enhance the ability

to extract meaningful insights from complex temporal datasets, supporting more

effective decision-making and strategy optimization. As the field evolves, ongoing

innovations will continue to refine pattern mining techniques, driving progress in

data analysis.

References

1. Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, and Young-Koo

Lee. 2009. Discovering Periodic-Frequent Patterns in Transactional Databases. In Proceedings

of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining.

Springer-Verlag, Berlin, Heidelberg, 242–253.

2. R. Uday Kiran, P. Krishna Reddy: Towards Efficient Mining of Periodic-Frequent Patterns in

Transactional Databases. DEXA (2) 2010: 194–208

3. Kiran, R. U., Veena, P., Ravikumar, P., Saideep, C., Zettsu, K., Shang, H., Toyoda, M.,

Kitsuregawa, M., and Reddy, P. K. (2022). Efficient Discovery of Partial Periodic Patterns

in Large Temporal Databases. Electronics, 11(10), 1523.

4. Pamalla Veena, Rage Uday Kiran, Penugonda Ravikumar, Likhitha Palla, Yuto Hayamizu,

Kazuo Goda, Masashi Toyoda, Koji Zettsu, Sourabh Shrivastava: A fundamental approach

to discover closed periodic-frequent patterns in very large temporal databases. Appl. Intell.

53(22): 27344–27373 (2023).

5. Palla Likhitha, Pamalla Veena, R. Uday Kiran, Yutaka Watanobe, Koji Zettsu: Discovering

Maximal Partial Periodic Patterns in Very Large Temporal Databases. IEEE BigData 2021:

1460–1469.

6. Palla Likhitha, Penugonda Ravikumar, Deepika Saxena, Rage Uday Kiran, Yutaka Watanobe:

k-PFPMiner: Top-k Periodic Frequent Patterns in Big Temporal Databases. IEEE Access 11:

119033–119044 (2023).

7. J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy, Masaru Kitsuregawa: Discovering Periodic-

Correlated Patterns in Temporal Databases. Trans. Large Scale Data Knowl. Centered Syst. 38:

146–172 (2018).

8. R. Uday Kiran, P. Krishna Reddy: An Alternative Interestingness Measure for Mining Periodic-

Frequent Patterns. DASFAA (1) 2011: 183–192.

9. Pamalla Veena, Rage Uday Kiran, Penugonda Ravikumar, Likhitha Palla, Yutaka Watanobe,

Sadanori Ito, Koji Zettsu, Masashi Toyoda, B. V. V. Raj: 3P-ECLAT: mining partial periodic

patterns in columnar temporal databases. Appl. Intell. 54(11–12): 657–679 (2024)

10. R. Uday Kiran, Haichuan Shang, Masashi Toyoda, Masaru Kitsuregawa: Discovering Recur-

ring Patterns in Time Series. EDBT 2015: 97–108.

Chapter 7

Spatial Databases: Representation,
Creation, and Statistics

Abstract This chapter provides a comprehensive guide to working with geo-

referenced databases, focusing on both transactional and temporal formats. It

covers the theoretical foundations, including formal definitions and mathematical

representations, as well as practical applications, such as generating synthetic

datasets, converting dataframes, and analyzing statistical details. Using the PAMI

package, users can create large-scale geo-referenced databases tailored to specific

requirements, convert existing data into spatially and temporally aware formats, and

derive key statistical insights. This chapter equips data scientists and researchers

with the tools and knowledge to effectively manage and analyze spatial data.

7.1 Introduction

A spatial database, also known as a structured certain binary spatial database,

stores data with spatial attributes, such as the position of pixels in raster images

or the locations of points, lines, and polygons in vector images. Figure 7.1 visually

represents the complex factors involved in forming a spatial database. This figure

highlights the intricate relationships and interactions crucial for organizing and

analyzing temporal data within the spatial database framework.

A spatial database does not function independently; it requires integration with

other types of databases to leverage its capabilities thoroughly. Typically, the data

about spatial items (or objects) is modeled as part of a transactional or temporal

database. When a spatial database is combined with a transactional database, the

resultant is called a geo-referenced transactional database. Similarly, when a spatial

database is integrated with a temporal database, it forms a geo-referenced temporal

database. This chapter provides an in-depth exploration of spatial databases, as well

as geo-referenced transactional and geo-referenced temporal databases, offering

insights into their structures, functionalities, and applications.

This chapter covers the following key aspects of transactional databases:

1. Theoretical Representation: It provides a formal definition of spatial databases,

geo-referenced transactional databases, and geo-referenced temporal databases

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_7

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_7
https://doi.org/10.1007/978-981-96-6791-8_7
https://doi.org/10.1007/978-981-96-6791-8_7
https://doi.org/10.1007/978-981-96-6791-8_7
https://doi.org/10.1007/978-981-96-6791-8_7
https://doi.org/10.1007/978-981-96-6791-8_7
https://doi.org/10.1007/978-981-96-6791-8_7
https://doi.org/10.1007/978-981-96-6791-8_7
https://doi.org/10.1007/978-981-96-6791-8_7
https://doi.org/10.1007/978-981-96-6791-8_7
https://doi.org/10.1007/978-981-96-6791-8_7

76 7 Spatial Databases: Representation, Creation, and Statistics

Fig. 7.1 Factors contributing to the creation of a spatial database

using set theory, laying the theoretical foundation for understanding these

complex systems.

2. Practical Representation: The chapter explores how these databases are prac-

tically implemented and stored in computer systems, offering insights into their

real-world applications and management.

3. Synthetic Database Creation: It discusses techniques for generating synthetic

databases, which are crucial for testing, benchmarking, and evaluating the

performance of various pattern mining algorithms.

4. Dataframe Conversion: The chapter outlines methods for converting struc-

tured dataframes into geo-referenced transactional and geo-referenced temporal

databases, enhancing their utility for broader data analysis and application

development.

5. Database Statistics: It explains how to derive and interpret statistical details

about the databases, providing tools for assessing their characteristics and

performance.

7.2 Theoretical Representation

7.2.1 Spatial Database

A spatial database represents a collection of items along with their respective

coordinates. Each item must have a unique name, and no two items can have the

same coordinates. The formal definition is provided below.

Definition 7.1 (Spatial Database) Let SI = {i1, i2, · · · , in}., n ≥ 1., be a set of

spatial items. Let Pij = {(x1, y1), (x2, y2), · · · , (xp, yp)}, p ≥ 1,. denote the set of

coordinates for an item ij ∈ SI .. The location (or spatial) database SD is a set of

items and their coordinates. That is, SD = {(i1, Pi1), (i2, Pi2), · · · , (in, Pin)}.. This

definition allows the spatial database to represent items of various spatial forms,

such as pixels, points, lines, or polygons.

Example 7.1 Let SI = {a, b, c, d, e, f, g}. be a set of spatial items, each represent-

ing a sensor at specific coordinates. Figure 7.2a displays the spatial database for all

items in SI . The spatial visualization of these items within a coordinate system is

shown in Fig. 7.2b.

7.2 Theoretical Representation 77

Fig. 7.2 A spatial database.

(a) Example of spatial items

and their coordinates. (b)

Visualization of the spatial

locations of the items

Item Coordinates

a POINT(0 1)

b POINT(2 1)

c POINT(1 0)

d POINT(1 2)

e POINT(1 1)

f POINT(1 5)

g POINT(1 6)

(a) Spatial database (b) visualization

7.2.2 Geo-referenced Transactional Database

When the data of stationary spatial objects is stored in a transactional database

format, the resulting system is referred to as a geo-referenced transactional database

[1]. This type of database integrates the spatial characteristics of objects with the

transactional data, enabling the analysis and management of spatial information

within the context of transactional processes.

Definition 7.2 (Geo-referenced Transactional Database) Let X ⊆ SI . be an

itemset (or a pattern). If X contains k items, where k ≥ 1., then X is called a k-

pattern. A transaction tt id = (tid, Y)., where t id ≥ 1. represents the transaction

identifier, and Y ⊆ SI . is a pattern. A transactional database, denoted as T DB, is

a collection of transactions, defined as T DB = {t1, t2, · · · , tm}., where 1 ≤ m ≤

|T DB|., and |T DB|. represents the size of the database. The combination of a spatial

database and a transactional database forms a geo-referenced transactional database,

denoted as GT D. Formally, GT D = SD × T DB ..

Example 7.2 Figure 7.3a illustrates a spatial database, while Fig. 7.3b presents a

hypothetical transactional database generated by the spatial items. This database

contains seven transactions, identified by transaction identifiers (or t id) numbered 1

to 7. When the item information in the transactional database is replaced with their

corresponding spatial information, the resultant database is termed a geo-referenced

transactional database. The horizontal format of this database is shown in Fig. 7.3c,

and the vertical format is depicted in Fig. 7.4.

•> Important

A geo-referenced transactional database contains stationary spatial items whose

positions do not vary over time.

78 7 Spatial Databases: Representation, Creation, and Statistics

Fig. 7.3 Creation of a geo-referenced transactional database: (a) spatial database, (b) transactional

database, and (c) geo-referenced transactional database

Fig. 7.4 Geo-referenced transactional database in the vertical format

7.2.3 Geo-referenced Temporal Database

If the data of the spatial objects is stored in a temporal database format, the resulting

database is known as a geo-referenced temporal database.

Definition 7.3 (Geo-referenced Temporal Database) A transaction, denoted as

tt id ., is a triplet containing a transaction identifier, a timestamp, and a pattern. That

is, tt id = (tid, ts, Y)., where t id ≥ 1. represents the transaction identifier, ts ∈ R
+

.

represents the timestamp, and Y ⊆ SI . is a pattern. A temporal database, denoted

as T empDB, is an ordered collection of transactions by time. That is, T empDB =

{t1, t2, · · · , tm}., where 1 ≤ m ≤ |T empDB|., and |T empDB|. represents the size of

the database. Integrating spatial and temporal databases results in a geo-referenced

temporal database denoted as GT empD. Formally, GT empD = SD × T empDB ..

Example 7.3 Figure 7.5a shows the spatial database. Figure 7.5b depicts a hypo-

thetical temporal database generated by the spatial items. This database includes

seven transactions, each numbered from 1 to 7 as the transaction identifiers (or t id).

The database is characterized by irregular temporal intervals, indicating nonuniform

gaps between consecutive transactions. When the item information in the temporal

database is replaced with their spatial information, the resulting database is known

as a geo-referenced temporal database. The horizontal format of this database is

shown in Fig. 7.5c, and the vertical format is illustrated in Fig. 7.6.

7.3 Practical Representation 79

Fig. 7.5 Creation of a geo-referenced temporal database: (a) spatial database, (b) temporal

database, and (c) geo-referenced temporal database

Fig. 7.6 The vertical format of a geo-referenced temporal database

•> Important

A geo-referenced temporal database is a temporal database containing spatial items.

7.3 Practical Repre sentation

7.3.1 Spatial Database

To create a spatial database, follow these rules:

1. One Transaction per Line: Each line in the file should represent a unique

transaction. No two lines should be identical.

2. Two Columns per Line: Each line must have exactly two columns. A delimiter

should separate these columns. By default, the PAMI algorithms use a tab as the

delimiter, but you can also use commas or s paces.

3. Order of Elements in a Line: The first column should contain the name of the

item. The second column should include the spatial information corresponding

to that item.

80 7 Spatial Databases: Representation, Creation, and Statistics

4. No Duplicates: Each column must have unique entries. In other words, no two

rows in a column should have the same value.

In summary, the format of a spatial database should be “spatialI tem〈sep〉coordi .

nates.” For example, if using a tab as the delimiter, the spatial database shown in

Fig. 7.2a would look like this:

a POINT(0 1)

b POINT(2 1)

c POINT(1 0)

d POINT(1 2)

e POINT(1 1)

f POINT(1 5)

g POINT(1 6)

7.3.2 Geo-referenced T ransactional Database

A geo-referenced transactional database is essentially a transactional database that

contains spatial items. It follows all the rules for a transactional database (see

Sect. 3.3). In addition to these rules, items should be replaced with their spatial

coordinates. The format for this type of database is

. coordinates1〈sep〉coordinates2〈sep〉coordinates3〈sep〉 · · ·

If using a tab as the delimiter, the geo-referenced transactional database shown

in Fig. 7.3c would appear like this:

POINT(0 1) POINT(2 1) POINT(1 0)

POINT(0 1) POINT(1 0) POINT(1 2)

POINT(2 1) POINT(1 2) POINT(1 1) POINT (1 5)

POINT(0 1) POINT(1 0) POINT(1 1) POINT (1 5)

POINT(0 1) POINT(1 1) POINT(1 5) POINT(1 6)

POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5)

POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5)

7.3.3 Geo-referenced Temporal Database

A geo-referenced temporal database [2] is a temporal database that includes spatial

items. It adheres to all the rules for a temporal database (see Sect. 5.3). Additionally,

items should be replaced with their spatial coordinates. The format for this type of

database is

7.4 Creating Synthetic Datasets 81

. t imestamp〈sep〉coordinates1〈sep〉coordinates2〈sep〉coordinates3〈sep〉 · · ·

If the delimiter is a tab, the geo-referenced temporal database shown in Fig. 7.5c

would look like this:

1 POINT(0 1) POINT(2 1) POINT(1 0)

2 POINT(0 1) POINT(1 0) POINT(1 2)

3 POINT(2 1) POINT(1 2) POINT(1 1) POINT (1 5)

3 POINT(0 1) POINT(1 0) POINT(1 1) POINT (1 5)

6 POINT(0 1) POINT(1 1) POINT(1 5) POINT(1 6)

6 POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5)

8 POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5)

7.4 Creating Synthetic Datasets

The PAMI package provides a robust and versatile tool for generating synthetic

geo-referenced transactional and temporal databases to meet various requirements.

Each item in these databases is assigned a unique random spatial coordinate within

a defined range. This range is specified by the intervals (x1, y1). and (x2, y2)., where

x1 ≤ x2 . and y1 ≤ y2 .. Figure 7.7 illustrates the area within which these random

coordinates will be assigned to the items in the database.

Fig. 7.7 The area within

which random coordinates

will be assigned to the items

in the database

82 7 Spatial Databases: Representation, Creation, and Statistics

7.4.1 Generating Synthetic Geo-referenced Transactional

Database

The PAMI package offers algorithms to generate synthetic geo-referenced transac-

tional databases based on user specifications. Users can create a database of any

size, with items having coordinates within specified intervals.

To illustrate, consider the following sample code that generates a synthetic

geo-referenced transactional database with 100,000 transactions. Each transaction

includes an average of 10 items selected from a set of 1000 possible items, with

coordinates ranging from (0,0) to (100,100):

Program 1: Generating Synthetic Geo-referenced Transactional Database

1 from PAMI.extras.syntheticDataGenerator import

GeoReferentialTransactionalDatabase as db→֒

2

3 obj =

db.GeoReferentialTransactionalDatabase(databaseSize=100000,

avgItemsPerTransaction=10, numItems=1000, x1=0, y1=0,

x2=100, y2=100, sep='\t')

→֒

→֒

→֒

4 obj.create()

5 obj.save('geoReferencedTransactionalDatabase.csv')

6 #read the generated transactions into a dataframe

7 GRTDF=obj.getTransactions()

8 print('Runtime: ' + str(obj.getRuntime()))

9 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

10 print('Memory (USS): ' + str(obj. getMemoryUSS()))

7.4.2 Generating Synthetic Geo-referenced Temporal Database

The PAMI package provides algorithms to create synthetic geo-referenced temporal

databases tailored to user specifications. Users can generate databases of any size,

with transactions occurring regularly or irregularly and items having coordinates

within a defined interval.

You can create a synthetic geo-referenced temporal database using the following

sample code. This example generates a database with 100,000 transactions, each

containing an average of 10 items from a set of 1000 possible items. The coordinates

for the items are within the range (0,0) to (100,100). The code also specifies

probabilities for timestamps to illustrate their distribution:

7.5 Deriving Geo-referenced Databases from a Dataframe 83

Program 2: Generating Synthetic Geo-referenced Temporal Database

1 from PAMI.extras.syntheticDataGenerator import

GeoReferentialTemporalDatabase as db→֒

2

3 obj = db.GeoReferentialTemporalDatabase(databaseSize=100000,

avgItemsPerTransaction=10, numItems=1000,

occurrenceProbabilityOfSameTimestamp=0,

occurrenceProbabilityToSkipSubsequentTimestamp=0, x1=0,

y1=0, x2=100, y2=100, sep='\t')

→֒

→֒

→֒

→֒

4 obj.create()

5 obj.save('geoReferentialTemporalDatabase.csv')

6 GRTempDF=obj.getTransactions()

7 print('Runtime: ' + str(obj .getRuntime()))

8 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

9 print('Memory (USS): ' + str(obj. getMemoryUSS()))

7.5 Deriving Geo-referenced Databases from a Dataframe

The PAMI package provides functionality to convert a dataframe into either a geo-

referenced transactional database or a geo-referenced temporal database, making it

suitable for transaction-based data analysis.

7.5.1 Dataframe to Geo-referenced Transactional Database

The following code demonstrates how to convert a dataframe into a geo-referenced

transactional database:

Program 3: Converting a Dataframe into a Geo-referenced Transactional

Database

1 from PAMI.extras.convert import DF2DB as alg

2 import pandas as pd

3 import numpy as np

4

5 #creating a 4 x 4 dataframe with random values

6 data = np.random.randint(1, 100, size=(4, 4))

84 7 Spatial Databases: Representation, Creation, and Statistics

7 dataFrame = pd.DataFrame(data,

8 columns=['POINT(0 0)', 'POINT(0 1)', 'POINT(0 2)', 'POINT(0

3)'])→֒

9

10 obj = alg.DF2DB(dataFrame)

11 obj.convert2TransactionalDatabase(

12 oFile='georeferencedTransactionalDatabase.txt',

13 condition='>=', thresholdValue=36

14)

15 print('Runtime: ' + str(obj.getRuntime()))

16 print ('Memory (RSS): ' + str(obj.getMemoryRSS()))

17 print('Memory (USS): ' + str(obj. getMemoryUSS()))

7.5.2 Dataframe to Geo-referenced Temporal Database

The following code demonstrates how to convert a dataframe into a geo-referenced

temporal database:

Program 4: Converting a Dataframe into a Geo-referenced Temporal

Database

1 from PAMI.extras.convert import DF2DB as alg

2 import pandas as pd

3 import numpy as np

4

5 #creating a 5 x 4 dataframe with random values

6 data = np.random.randint(1, 100, size=(5, 4))

7 dataFrame = pd.DataFrame(data,

8 columns=['POINT(0 0)', 'POINT(0 1)',

9 'POINT(0 2)', 'POINT(0 3)'])

10 # Adding a timestamp column with specific values

11 timestamps = [1, 3, 3, 5, 8]

12 dataFrame. insert(0, 'timestamp', timestamps)

13 #converting the database into a georeferenced temporal database

14 obj = alg.DF2DB(dataFrame)

15 obj.convert2TemporalDatabase(

16 oFile='georeferencedTemporalDatabase.txt',

17 condition='>=', thresholdValue=36)

18 print('Runtime: ' + str(obj.getRuntime()))

7.6 Knowing the Statistical Details 85

19 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

20 print('Memory (USS): ' + str(obj. getMemoryUSS()))

7.6 Knowing the Statistical Details

The dbStats sub-sub-package in the extras sub-package of PAMI provides users

with statistical details about a geo-referenced database.

7.6.1 Statistical Details of a Geo-referenced Transactional

Database

The PAMI library provides the following statistical details for a geo-referenced

transactional database:

1. Database size: Total number of transactions

2. Total number of items: Unique items in the database

3. Transaction lengths: Minimum, average, and maximum number of items per

transaction

4. Standard deviation of transaction sizes: Variability in the number of items per

transaction

5. Variance in transaction sizes: Measure of dispersion in transaction sizes

6. Sparsity: Measure of how sparse the data is

7. Item frequencies: Count of each item’s occurrence in the database

8. Distribution of transaction lengths: How transaction sizes are distributed

across the database

9. Spatial visualization: Visual representation of item locations

Here is how to use dbStats to obtain these s tatistics:

Program 5: Deriving Statistical Details for a Geo-referenced Transactional

Database

1 from PAMI.extras.dbStats import

GeoreferencedTransactionalDatabase as stat→֒

2

3 obj = stat.GeoreferencedTransactionalDatabase(iFile =

"georeferencedTransactionalDatabase.txt")→֒

4 obj.run()

86 7 Spatial Databases: Representation, Creation, and Statistics

5 obj.printStats()

6 obj.plotGraphs()

7.6.2 Statistical Details of a Geo-referenced Temporal

Database

The PAMI library provides the following statistical details for a geo-referenced

temporal database:

1. Database size: The total number of transactions in the database

2. Total number of items: The number of unique items in the database

3. Transaction lengths: The minimum, average, and maximum number of items in

the transactions

4. Standard deviation of transaction sizes: A measure of the variability in the

number of items per transaction

5. Variance in transaction sizes: A measure of how transaction sizes differ from

the average

6. Sparsity: The proportion of empty (zero) elements in the database

7. Item frequencies: The count of occurrences of each item in the database

8. Distribution of transaction lengths: How transaction sizes are spread across the

database

9. Inter-arrival times: The minimum, average, and maximum time intervals

between transactions

10. Periodicity of items: The minimum, average, and maximum time intervals

between occurrences of the same item

11. Spatial visualization: Visual representation of item locations

Here is an example of how to use the dbStats to obtain the statistics:

Program 6: Deriving the Statistical Details for Geo-referenced Temporal

Database

1 from PAMI.extras.dbStats import GeoreferencedTemporalDatabase

as stat→֒

2

3 obj = stat.GeoreferencedTemporalDatabase(iFile =

"georeferencedTemporalDatabase.txt")→֒

4 obj .run()

5 obj.printStats()

6 obj.plotGraphs()

References 87

7.7 Conclusion

In this chapter, we explored geo-referenced databases’ creation, manipulation, and

analysis, focusing on both transactional and temporal contexts. We delved into the

practical steps for generating synthetic datasets, providing a hands-on approach to

creating large-scale geo-referenced transactional and temporal databases using the

PAMI package. Additionally, we examined methods to convert existing dataframes

into geo-referenced formats, thus enhancing their applicability in spatial-temporal

data analysis.

Finally, we discussed the statistical analysis of these databases, highlighting the

importance of understanding key metrics such as transaction lengths, sparsity, and

periodicity. By leveraging the methods provided in the PAMI package, users can

efficiently derive and visualize these statistics, enabling more informed decision-

making in spatial-temporal data management and analysis.

This chapter serves as a comprehensive guide for anyone working with geo-

referenced databases. It provides both theoretical foundations and practical appli-

cations to empower data scientists and researchers.

References

1. R. Uday Kiran, Sourabh Shrivastava, Philippe Fournier-Viger, Koji Zettsu, Masashi Toyoda,

Masaru Kitsuregawa: Discovering Frequent Spatial Patterns in Very Large Spatiotemporal

Databases. SIGSPATIAL/GIS 2020: 445–448.

2. Palla Likhitha, Pamalla Veena, Rage Uday Kiran, Koji Zettsu: Discovering Geo-referenced

Frequent Patterns in Uncertain Geo-referenced Transactional Databases. PAKDD (3) 2023:

29–41.

Chapter 8

Pattern Discovery in Spatial Databases

Abstract This chapter presents a comprehensive approach to mining geo-

referenced frequent patterns and geo-referenced periodic-frequent patterns by

integrating spatial and temporal dimensions in transactional databases. Geo-

referenced frequent patterns focus on identifying sets of spatially proximate items

that occur frequently, while geo-referenced periodic-frequent patterns extend this

by considering periodicity in their occurrence. Efficient search techniques such as

the anti-monotonic property and neighborhood-aware depth-first search are utilized

to manage the large search space inherent in these tasks. The chapter also introduces

algorithms from the PAMI library, including FSP-growth and GPFPMiner,

which facilitate the discovery of these patterns. Real-world applications, such as

environmental sensor networks, can benefit from the insights gained through these

mining techniques, enabling a better understanding of spatial-temporal dynamics.

Practical Python implementations are provided to demonstrate how to mine, save,

and analyze geo-referenced patterns in large datasets. This chapter highlights the

importance of combining spatial and temporal analyses for improving decision-

making and system optimization in various domains.

8.1 Introduction

The previous chapter explored the concepts of spatial database construction,

representation, and statistical analysis. Building on that foundation, this chapter

focuses on extracting and analyzing meaningful patterns, which are critical for

understanding trends and behaviors over space and time.

Traditional frequent pattern mining and its variants, such as correlated pattern

mining and periodic-frequent pattern mining, generally assume that the spatial

relationships between items do not affect the overall interestingness of a pattern.

However, this assumption limits the effectiveness of these models when applied

to spatial databases. In many real-world applications, patterns whose items are

spatially close to one another are often more significant to users than those where the

items are widely dispersed across a coordinate system. Consequently, incorporating

spatial proximity into the pattern mining process is essential for uncovering more

meaningful insights from spatiotemporal datasets.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_8

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_8
https://doi.org/10.1007/978-981-96-6791-8_8
https://doi.org/10.1007/978-981-96-6791-8_8
https://doi.org/10.1007/978-981-96-6791-8_8
https://doi.org/10.1007/978-981-96-6791-8_8
https://doi.org/10.1007/978-981-96-6791-8_8
https://doi.org/10.1007/978-981-96-6791-8_8
https://doi.org/10.1007/978-981-96-6791-8_8
https://doi.org/10.1007/978-981-96-6791-8_8
https://doi.org/10.1007/978-981-96-6791-8_8
https://doi.org/10.1007/978-981-96-6791-8_8

90 8 Pattern Discovery in Spatial Databases

Fig. 8.1 Air pollution analytics using frequent patterns. The terms “SID,” “PM2.5,” “FPs,” and

“S” represent “station identifier,” “particular matter with diameter 2.5 µ.m or less,” “frequent

patterns,” and “support ,” respectively

Example 8.1 Air pollution is a significant contributor to many cardio-respiratory

health issues reported by residents of Japan. To address this, the Japanese Ministry

of the Environment established the Atmospheric Environmental Regional Obser-

vation System (AEROS) (https://soramame.env.go.jp/). This system consists of

air pollution sensors distributed across the country. Figure 8.1a shows the spatial

distribution of these sensors in AEROS. The data generated by this sensor network

at hourly intervals (see Fig. 8.1b) can be structured as a transactional database

(Fig. 8.1c) and analyzed using the frequent pattern model (Fig. 8.1d) to identify

sets of sensors (or geographic regions) where high levels of an air pollutant, such as

PM2.5 .,
1 occur frequently.

For instance, let {365, 996, 2769, 4815, 5687, 2395}. 2 and {4276, 4341, 4495,.–

4273, 4455}. 3 be two frequent patterns identified in the air pollution database.

The frequent pattern model treats both equally relevant, regardless of the spatial

distances between the sensors. However, the user might find the latter pattern more

meaningful, as it corresponds to a specific geographical area (i.e., the bay areas

south of Tokyo) where residents have been consistently exposed to high levels of

PM2.5 .. This highlights a limitation of applying traditional frequent pattern models

on geo-referenced transactional databases, where spatial information is an integral

part of the data.

To discover valuable patterns in spatial (or geo-referenced) datasets, the

researchers exploited the notion of “neighborhood items" and introduced different

types of interesting patterns hidden in geo-referenced transactional and temporal

databases. This chapter describes the notion of “neighborhood items," how to create

a neighborhood file, and discuss various types of patterns that can be discovered

from geo-referenced databases.

1 PM2.5 . refers to fine particulate matter with a diameter of 2.5 µ.m or smaller.
2 This pattern is represented by black dots in Fig. 8.1e.
3 This pattern is represented by red dots in Fig. 8.1e.

https://soramame.env.go.jp/
https://soramame.env.go.jp/
https://soramame.env.go.jp/
https://soramame.env.go.jp/
https://soramame.env.go.jp/

8.2 Neighboring Items 91

This chapter delves into the following topics:

1. Neighboring Items: We will define the notion of neighboring items, how to

create a neighborhood file, and describe its process.

2. Pattern Discovery in Geo-referenced Transactional Databases: This subsec-

tion describes the model of geo-referenced frequent patterns and how to find

them using the PAMI package.

3. Pattern Discovery in Geo-referenced Temporal Databases: This subsection

describes the model of geo-referenced periodic patterns and how to find them

using the PAMI package.

8.2 Neighboring Items

The concept of “neighborhood” is a crucial differentiator between pattern discovery

in spatial databases and conventional pattern discovery in transactional or temporal

databases. In spatial databases, such as geo-referenced transactional and geo-

referenced temporal databases, the goal is to uncover patterns consisting only of

neighboring items. Neighboring items are those located close to one another in

space. Next, we will formally define the notion of “neighboring items.”

8.2.1 Definition

Definition 8.1 (Neighborhood Items) Two spatial items, ip . and iq ∈ SI ., are

considered neighbors if the distance between them, Dist (ip, iq) = Dist (iq , ip).,

is less than or equal to a user-defined maximum distance (maxDist). Here, Dist (.).

is a distance function that adheres to the commutative property. The set of all

neighboring items for a given item ij ∈ I . is denoted by Nij ..

Example 8.2 Let I = {POINT (0, 1), POINT (2, 1), POINT (1, 0), POINT .

(1, 2),.- POINT (1, 1), POINT (1, 5), POINT (1, 6)}. be the set of loca-

tions of spatial items. The spatial database for all items in I . is pre-

sented in Table 8.1. Using the Euclidean distance as the distance function,

the distance between items POINT (0, 1). and POINT (1, 0). is given by

Dist (POINT (0, 1), POINT (1, 0)) = 1.414., since the user-specified

maxDist = 1.5., POINT (0, 1)., and POINT (1, 0). are considered neighbors

because Dist (POINT (0, 1), POINT (1, 0)) ≤ maxDist .. Additionally, items

POINT (1, 2). and POINT (1, 1). are also neighbors of POINT (0, 1)., resulting

in the set of neighbors NPOINT (0,1) = {POINT (1, 0), POINT (1, 2), POINT .

(1, 1)}.. The complete list of neighbors for every item in the database is shown in

Table 8.2.

92 8 Pattern Discovery in Spatial Databases

Table 8.1 Spatial database

Items Items Items Items

POINT (0, 1). POINT (1, 0). POINT (1, 1). POINT (1, 6).

POINT (2, 1). POINT (1, 2). POINT (1, 5).

Table 8.2 Neighborhood items

Item Neighbors

POINT (0, 1). {POINT (1, 0)., POINT (1, 2)., POINT (1, 1).}

POINT (2, 1). {POINT (1, 0)., POINT (1, 2)., POINT (1, 1).}

POINT (1, 0). {POINT (0, 1)., POINT (2, 1)., POINT (1, 1).}

POINT (1, 2). {POINT (0, 1)., POINT (2, 1)., POINT (1, 1).}

POINT (1, 1). {POINT (0, 1)., POINT (2, 1)., POINT (1, 0)., POINT (1, 2).}

POINT (1, 5). {POINT (1, 6).}

POINT (1, 6). {POINT (1, 5).}

8.2.2 Practical Representation

To create a neighborhood file for the items, follow these rules:

1. One Transaction per Line: Each line in the file should represent a unique

transaction. No two lines should be identical.

2. Order of Elements in a Line: The first element in a line represents the main

item. The remaining elements in a line represent the neighbors of the main item.

3. Delimiter: A delimiter should separate the items in a line. By default, the PAMI

algorithms use a tab as the delimiter, but you can also use commas or s paces.

In summary, the format of a neighborhood file should be

. spatialI tem1〈sep〉spatialI tem2〈sep〉spatialI tem3〈sep〉 · · ·

For example, if using a tab as the delimiter, the neighborhood file shown in

Table 8.2(a) would look like this:

POINT(0,1) POINT(1,0) POINT(1,2) POINT(1,1)

POINT(2,1) POINT(1,0) POINT(1,2) POINT(1,1)

POINT(1,0) POINT(0,1) POINT(2,1) POINT(1,1)

POINT(1,2) POINT(0,1) POINT(2,1) POINT(1,1)

POINT(1,1) POINT(0,1) POINT(2,1) POINT(1,0) POINT(1,2)

POINT(1,5) POINT(1,6)

POINT(1,6) POINT(1,5)

8.3 Geo-referenced Frequent Pattern 93

8.2.3 Creating Neighborhood File

The PAMI package offers a utility for generating neighborhood files from geo-

referenced transactional databases, where spatial items are represented as points.

By leveraging Euclidean distance, users can efficiently identify neighbors for each

spatial item within a specified maximum distance threshold.

The following Python code demonstrates how to process a geo-referenced

transactional database. It finds the neighbors for each spatial item, restricted by the

user-defined maximum distance, and outputs the results to a file or a dataframe for

further analysis.

Program 1: Generating Neighborhood File

1 from PAMI.extras.neighbours import FindNeighboursUsingEuclidean

as db→֒

2

3 obj = db.FindNeighboursUsingEuclidean(

4 iFile='spatiotransactional_T10I4D100K.csv',

5 maxDist=10,

6 sep='\t')

7 obj.create()

8 obj.save(oFile='neighbors.txt',)

9 #read the generated transactions into a dataframe

10 neighboringItems=obj.getNeighboringInformation()

11 #stats

12 print('Runtime: ' + str(obj. getRuntime()))

13 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

14 print('Memory (USS): ' + str(obj. getMemoryUSS()))

This script identifies neighboring spatial items and provides runtime and memory

statistics, facilitating performance evaluation and optimization for large datasets.

The resulting dataframe can be seamlessly integrated into further analyses or

visualizations.

8.3 Geo-referenced Frequent Pattern

8.3.1 The Basic Model

Let J = {j1, j2, . . . , jm}., wherem ≥ 1., represent a set of geo-referenced (or spatial)

items. For each item jk ∈ J ., let Qjk
= {(x1, y1), (x2, y2), . . . , (xq , yq)}, q ≥ 1.,

94 8 Pattern Discovery in Spatial Databases

denote the set of coordinates associated with that item. The spatial database SD .

compiles these items along with their respective coordinates, such that:

. SD = {(j1,Qj1), (j2,Qj2), . . . , (jm,Qjm)}.

This structure allows for the representation of spatial items in various forms,

including points, lines, or polygons. If Y ⊆ J . is an itemset (or pattern) containing

r . items, it is termed an r .-pattern. A pattern Y . in SD . is defined as an interesting

geo-referenced pattern if the maximum distance between any two of its items does

not exceed the user-specified maxDist .. Formally, Y . is a geo-referenced pattern if:

. max(Dist (ja, jb) | ∀ja, jb ∈ Y) ≤ maxDist, where a, b ∈ [1,m],

and Dist (). is a distance function that satisfies the commutative property.

Example 8.3 Let J = {POINT (0, 1), POINT (2, 1), POINT (1, 0), POINT .

(1, 2),.- POINT (1, 1), POINT (1, 5), POINT (1, 6)}. represent a set of air

pollution measuring sensors (or their locations). Table 8.1 presents the spatial

database for these items. Using the Euclidean distance function, the set of items

POINT (0, 1). and POINT (1, 0)., denoted as {POINT (0, 1), POINT (1, 0)}.,

forms a pattern containing two items, making it a 2-pattern. The distance between

POINT (0, 1). and POINT (1, 0). is given by Dist (POINT (0, 1), POINT .

(1, 0)) = 1.414., since the user-specified maxDist = 1.5., POINT (0, 1)., and

POINT (1, 0). are neighbors, and thus {POINT (0, 1), POINT (1, 0)}. qualifies

as an interesting geo-referenced pattern because max(Dist (x, z)) ≤ maxDist ..

A transaction tt id = (tid, Y). consists of a transaction identifier t id ≥ 1. and

a pattern Y ⊆ J .. A transactional database, denoted as T D ., is a collection of

such transactions: T D = {t1, t2, . . . , tn}, 1 ≤ n ≤ |T D|,. where |T D|. represents

the size of the database. If a pattern Z ⊆ Y ., it is said that Z . occurs in transaction

tt id .. Let T IDZ = {t idZ
a , tidZ

b , . . . , t idZ
c }, a, b, c ∈ (1, |T D|). denote the set of all

transaction identifiers where pattern Z . appears in the database. The support of Z .

in T D ., denoted as sup(Z)., represents the count of transactions containing Z ., i.e.,

sup(Z) = |T IDZ|..

Definition 8.2 (Geo-referenced Frequent Pattern [1]) A pattern Z . is considered

a geo-referenced frequent pattern if it meets the following two conditions: (i)

sup(Z) ≥ minSup . and (ii) max(Dist (jl, jm) | ∀jl, jm ∈ Z) ≤ maxDist .. Here,

minSup . is the user-specified minimum support threshold.

Example 8.4 The transactional database for all items in Table 8.3 is shown in

Table 8.4. This model accommodates irregular transaction occurrences in a

temporal database. For instance, the first transaction indicates that sensors a ., c.,

and d . recorded hazardous levels of the air pollutant PM2.5 . at timestamp 1. Similar

interpretations apply to the other transactions in Table 8.4. The size of this database

is n = |T D| = 14.. The spatial pattern ac. appears in transactions with timestamps

1, 2, 3, 16, 17, 18,. and 20., leading to T Sac = {1, 2, 3, 16, 17, 18, 20}.. Thus, the

8.3 Geo-referenced Frequent Pattern 95

Table 8.3 Spatial database Item Coord.

a (0, 1).

b (2, 1).

c (1, 0).

d (1, 2).

e (1, 1).

f (1, 5).

g (1, 6).

Table 8.4 Transactional

database
ts Items

1 acd

2 abce

3 abcd

4 def

5 deg

8 adg

10 adf

11 bcd

12 adf

13 ae

16 abcf

17 abcd

18 abcg

20 abcd

support of ac. in the database is sup(ac) = |T Sac| = 7.. Given the user-specified

minSup = 5., the spatial pattern ac. qualifies as a geo-referenced frequent pattern

since sup(ac) ≥ minSup ..

Definition 8.3 (Problem Definition) Given a set of items J ., a spatial database SD .,

a transactional database T D ., a minimum support value minSup ., and a maximum

distance value maxDist ., the problem definition is to identify all patterns in T D .

that have support no less than minSup . and a maximum distance between any two

items no greater than maxDist ..

8.3.2 Handling the Search Space

The search space of the geo-referenced frequent pattern is 2n−1,.where n represents

the total number of items in the geo-referenced transactional database. One can

handle this huge search space using the anti-monotonic property of minSup

and neighborhood-aware depth-first search. In the neighborhood-aware depth-first

search, the depth-first search on the itemset lattice is carried only for the child nodes

that contain all items as neighbors of the items in their respective parent nodes.

96 8 Pattern Discovery in Spatial Databases

8.3.3 Finding Geo-referenced Frequent Patterns

The PAMI library provides FSP-growth and Spatial ECLAT algorithms to find geo-

referenced frequent patterns. Below is an example Python script demonstrating how

to find the geo-referenced frequent patterns using the FSP-growth algorithm.

Program 2: Finding Geo-referenced Frequent Patterns

1 from PAMI.georeferencedFrequentPattern.basic import FSPGrowth

as alg→֒

2

3 obj = alg.FSPGrowth("spatiotransactional_T10I4D100K.csv",

4 "neighbors.txt", 1500, '\t')

5

6 obj.mine()

7 obj.save('georeferencedFrequentPatterns.txt')

8

9 # Retrieve the patterns as a DataFrame

10 GFPs = obj.getPatternsAsDataFrame()

11

12 # Display summary information

13 print('#Patterns: ' + str(len(GFPs)))

14 print(' Runtime: ' + str(obj.getRuntime()))

15 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

16 print(' Memory (USS): ' + str (obj.getMemoryUSS()))

8.4 Geo-referenced Periodic-Frequent Pattern

8.4.1 The Basic Model

Continuing with the basic spatial database model, we denote a time series database,

T SD, as a set of events. Each event represents t imestamp and items. That is,

T SD = ∪ts∈R+ ∪n
j=1 (ts, ij),.where ts ∈ R

+
. represents the timestamp. For brevity,

the time series database can also represented by grouping the events by a timestamp

as follows: A (irregular) time series database T SD is a collection of t ransactions.

That is, T SD = {tk, tl, · · · , tm}., k ≤ l ≤ m ≤ |T SD|., where tm = (ts, Y).,

where Y ⊆ I . is a pattern and |T SD|. represents the size of database. If a pattern

X ⊆ Y ., it is said that X occurs in transaction tm .. The timestamp of this transaction

is denoted as tsX
m .. Let T SX = {tsX

k , tsX
l , · · · , tsX

m }, k, l, m ∈ (1, |T SD|),. denote

the set of all timestamps in which the pattern X has appeared in the database.

8.4 Geo-referenced Periodic-Frequent Pattern 97

The number of transactions containing X in T SD is defined as the support of

X and denoted as sup(X).. That is, sup(X) = |T SX|.. The pattern X is said to

be a frequent pattern if the sup(X) ≥ minSup,. where minSup refers to the

user-specified minimum support value. Let tsX
k . and tsX

l ., j ≤ k < l ≤ m., be the

two consecutive timestamps in T SX
.. The time difference (or an inter-arrival time)

between tsX
l . and tsX

k . is defined as a period of X, say pX
a .. That is, pX

a = tsX
l − tsX

k ..

Let P X = (pX
1 , pX

2 , · · · , pX
b). be the set of all periods for pattern X. The

periodicity of X, denoted as per(X) = max(pX
1 , pX

2 , · · · , pX
b).. The frequent

pattern X is said to be a periodic-frequent pattern if per(X) ≤ maxPer ., where

maxPer refers to the user-specified maximum periodicity value. The periodic-

frequent pattern X is considered a GPFP if the maximum distance between its items

is less than or equal to the user-specified maximum distance (maxDist) value. That

is, X is a GPFP if max(Dist (ip, iq)|∀ip, iq ∈ X) ≤ maxDist,. where dist ().

is a distance function, say Euclidean distance, and maxDist is a user -specified

maximum distance. value [2].

Example 8.5 Let I = {p, q, r, s, t, u}. be a set of sensor identifiers (or

items) in a network. The spatial locations of these items are shown in Table 8.5.

A hypothetical time series database constituting these items is shown in Table 8.6.

In the first transaction of Table 8.6, “1” represents the timestamp, and {p, q, r, s}.

represents the transaction containing the items.4 A similar statement can be made

on remaining transactions in Table 8.6. The size of this temporal database, i.e.,

|T SD| = 10.. The complete set of timestamps at which rs has occurred in Table 8.6,

i.e., T Srs = {1, 2, 5, 6, 9, 10}.. The support of “rs, ” i.e., sup(rs) = |T Srs | =

|{1, 2, 5, 6, 9, 10}| = 6.. If the user-specified minSup = 3., then rs is said to be

a frequent pattern because of sup(rs) ≥ minSup.. The periods for this pattern are:

prs
1 = 1 (= 1 − tsinitial)., prs

2 = 1 (= 2 − 1)., prs
3 = 3 (= 5 − 2)., prs

4 = 1 (=

6 − 5)., prs
5 = 3 (= 9 − 6)., prs

6 = 1 (= 10 − 9)., and prs
7 = 0 (= tsf inal − 10).,

where tsinitial = 0. represents the timestamp of initial transaction and tsf inal =

|T SD| = 10. represents the timestamp of final transaction in the database. The

periodicity of rs, i.e., per(rs) = maximum(1, 2, 3, 1, 3, 1, 0) = 3.. If the

user-defined maxPer = 4., then the frequent pattern “rs” is said to be a periodic-

frequent pattern because per(rs) ≤ maxPer .. The pattern rs is also a GPFP because

max(Dist (r, s)) ≤ maxDist ..

Table 8.5 Location (or

geo-referential) database
Item Point Item Point

p (2,3) s (2,3)

q (6,8) t (1,5)

r (1,4) u (3,4)

4 A set of sensor identifiers in which pollution is very high at timestamp 1.

98 8 Pattern Discovery in Spatial Databases

Table 8.6 Time series

database. The items whose

values were equal to 0 at a

particular timestamp were

removed for brevity

ts Items ts Items

1 p, q, r, s . 6 p, q, r, s .

2 r, s, t . 7 p, q .

3 p, q, r, u. 8 t, u.

4 p, s, t . 9 r, s .

5 q, r, s, t, u. 10 p, q, r, s, t, u.

8.4.2 Handling the Search Space

The search space of geo-referenced periodic-frequent pattern mining is the same

as that of geo-referenced frequent pattern mining. In other words, the search space

of geo-referenced periodic-frequent patterns is 2n − 1., where n represents the total

number of items in the data. One can effectively reduce the search space using the

anti-monotonic property and the neighborhood-aware depth-first search .

8.4.3 Finding Geo-referenced Periodic-Frequent Patterns

The PAMI library provides GPFPMiner, PFS-ECLAT, and ST-ECLAT algorithms to

find geo-referenced periodic-frequent patterns. Below is an example Python script

demonstrating how to find the geo-referenced periodic-frequent patterns using the

GPFPMiner algorithm.

Program 3: Finding Geo-referenced Periodic-Frequent Patterns

1 from PAMI.geoReferencedPeriodicFrequentPattern.basic import

GPFPMiner as alg→֒

2

3 obj = alg.GPFPMiner("spatiotemporal_T10I4D100K.csv",

4 "neighbors.txt", 1500, 500, '\t')

5

6 obj.mine()

7 obj.save('georeferencedPeriodicFrequentPatterns.txt')

8

9 geoperiodicFrequentPatternsDF= obj.getPatternsAsDataFrame()

10 print('Total No of patterns: ' +

str(geoperiodicFrequentPatternsDF))→֒

11 print('Runtime: ' + str(obj.getRuntime())) #measure the runtime

12

13 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

14 print('Memory (USS): ' + str(obj .getMemoryUSS()))

References 99

8.5 Conclusion

This chapter explored the concepts and techniques for mining geo-referenced

frequent patterns and geo-referenced periodic-frequent patterns. By incorporating

both spatial and temporal dimensions, these patterns provide valuable insights into

how data points (such as sensor readings) behave across time and space.

We began by defining geo-referenced frequent patterns, which consider spatial

proximity between items. We then continued to define geo-referenced periodic-

frequent patterns, which also take into account periodicity in addition to spatial

proximity and frequency.

To manage the vast search space, we employed efficient search techniques, such

as the anti-monotonic property and neighborhood-aware depth-first search, which

significantly reduced the computational complexity. Additionally, we demonstrated

how to use the PAMI library, which provides algorithms like FSP-growth, GPFP-

Miner, and others for mining such patterns.

The Python script examples provided in the chapter show how these algorithms

can be practically applied to datasets, illustrating the process of mining, saving,

and analyzing geo-referenced patterns. These patterns are beneficial in real-world

applications such as air pollution monitoring, environmental studies, and sensor

networks, where understanding the interplay between spatial and temporal factors

is crucial.

By identifying patterns that recur periodically and are geographically close, we

can gain a deeper understanding of the dynamics within spatial networks and time

series data, ultimately helping to improve decision-making and system optimization

in various fields.

References

1. R. Uday Kiran, Sourabh Shrivastava, Philippe Fournier-Viger, Koji Zettsu, Masashi Toyoda,

Masaru Kitsuregawa: Discovering Frequent Spatial Patterns in Very Large Spatiotemporal

Databases. SIGSPATIAL/GIS 2020: 445–448.

2. Penugonda Ravikumar, R. Uday Kiran, Palla Likhitha, T. Chandrasekhar, Yutaka Watanobe,

Koji Zettsu: Discovering Geo-referenced Periodic-Frequent Patterns in Geo-referenced Time

Series Databases. DSAA 2022: 1-10

Chapter 9

Utility Databases: Representation,
Creation, and Statistics

Abstract This chapter provides a comprehensive overview of utility databases,

elucidating their theoretical foundations, practical applications, and significance in

data mining and analysis. We begin with a formal definition of utility databases,

detailing their structure and the identification of transactions using set theory. Prac-

tical considerations for storing and managing utility databases on computing devices

are discussed, including formatting rules and transaction storage. Additionally, we

explore methods for generating synthetic utility databases, which are crucial for

testing and benchmarking algorithms in data mining. Techniques for converting

structured dataframes into utility databases are also covered, expanding the scope of

data analysis. Furthermore, we examine how to derive and interpret statistical details

of utility databases to enhance understanding of their properties and optimize their

use. By integrating theoretical insights with practical skills, this chapter provides

users with the procedures to effectively manage, analyze, and leverage utility

databases in diverse real-world applications, laying the groundwork for advanced

data analysis.

9.1 Introduction

A structured certain nonbinary transactional database, or utility database [1], is an

organized collection of transactions where items can take values from (−∞,∞)..

A transactional identifier uniquely identifies each transaction. Utility databases are

widely used in various real-world applications. For instance, in sensor networks,

each transaction might represent the values recorded by sensors at specific time

intervals. A utility database holds pixel data and their associated band values of

satellite imagery. In social networks, utility databases track user interactions and

activities over time, aiding in discovering trends and patterns in user behavior.

Figure 9.1 illustrates the critical factors in creating a utility database. The

figure highlights the complex relationships and interactions essential for organizing

and analyzing nonbinary data within the utility database framework. When all

transactions in a utility database are accumulated over time, the result is a utility

temporal database. Likewise, if the database contains spatial elements, it forms

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_9

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_9
https://doi.org/10.1007/978-981-96-6791-8_9
https://doi.org/10.1007/978-981-96-6791-8_9
https://doi.org/10.1007/978-981-96-6791-8_9
https://doi.org/10.1007/978-981-96-6791-8_9
https://doi.org/10.1007/978-981-96-6791-8_9
https://doi.org/10.1007/978-981-96-6791-8_9
https://doi.org/10.1007/978-981-96-6791-8_9
https://doi.org/10.1007/978-981-96-6791-8_9
https://doi.org/10.1007/978-981-96-6791-8_9
https://doi.org/10.1007/978-981-96-6791-8_9

102 9 Utility Databases: Representation, Creation, and Statistics

Fig. 9.1 Illustration of factors contributing to the creation of a utility database

a geo-referenced utility (transactional or temporal) database. For the sake of

brevity, this chapter focuses on knowledge discovery within the conventional utility

database.

This chapter covers the following key aspects of utility databases:

1. Theoretical Representation: Provides formal definitions of utility databases.

2. Practical Representation: Discusses how utility databases are structured,

stored, and managed in computer systems, with examples of real-world

applications.

3. Synthetic Database Creation: Covers techniques for generating synthetic

databases, essential for testing, benchmarking, and evaluation purposes.

4. Dataframe Conversion: Explores methods for transforming structured

dataframes into utility databases, expanding their use for comprehensive data

analysis.

5. Database Statistics: Explains how to calculate and interpret statistical metrics

to evaluate the characteristics and performance of these databases.

9.2 Theoretical Representation

A (transactional) utility database represents a collection of nonbinary transactions,

each uniquely identified and containing a specific set of items and their values.

Definition 9.1 (External Utility Database) Let J = {j1, j2, . . . , jn}. where n ≥

1. denotes a collection of items. Each item jk ∈ J . is associated with a positive

value eu(jk)., referred to as its external utility. This external utility indicates the

significance of the item to the user. The external utility database (EUD) is defined

as the aggregation of all items in J . along with their respective external utility values,

formally represented as

. EUD = {(j1, eu(j1)), (j2, eu(j2)), . . . , (jn, eu(jn))}.

Example 9.1 Let J = {Bread, Jam,Butter,Book,Pen}. represent a collection of

items available in a supermarket. The prices of these items, as illustrated in

9.2 Theoretical Representation 103

Table 9.1a, constitute the external utility database. These external utility values also

reflect the items’ relative importance within the application context.

Definition 9.2 (Internal Utility Database) An internal utility (transactional)

database is defined as a set of transactions UDB = {T1, T2, . . . , Tm},m ≥ 1.,

where each transaction Ti ∈ UDB . is a subset of J . and is uniquely identified by

a positive integer i ∈ Z
+

., known as its transaction identifier (or t id .). Within each

transaction Ti ., every item jk ∈ Ti . is assigned a positive value f (jk, Ti)., referred to

as its internal utility. The internal utility typically represents the frequency of the

item’s occurrence within that transaction.

Example 9.2 A hypothetical internal utility database representing the purchases of

items in J . is presented in Table 9.1b. The first transaction indicates that a customer

has purchased two units of Bread, one unit of Jam, and three units of Butter. Similar

interpretations can be applied to the other transactions in this table.

Definition 9.3 (Utility Database) A utility database, denoted as UD ., is an internal

utility database in which the internal utility values of the items in a transaction are

replaced by the product of their external and internal utility values.

Example 9.3 Table 9.1c displays the utility database generated by multiplying the

internal and external utility values of all items in the transactions of an internal

utility database.

Table 9.1 Hypothetical utility database of a supermarket

(a) External utility database (b) Internal utility database

Item Price (Rs..)

Bread 50

Jam 50

Butter 50

Book 20

Pen 20

t id Items

1 (Bread,2), (Jam,1), (Butter,3)

2 (Bread,1), (Book, 2), (Pen,3)

3 (Jam,3), (Butter,1)

4 (Bread,2), (Jam,1), (Butter,2), (Pen,1)

5 (Book,3), (Pen,1)

(c) Utility database

tid Bread Jam Butter Book Pen

1 100 (= 2 × 50.) 50 (= 1 × 50.) 150 (= 3 × 50.) 0 (= 0 × 20.) 0 (= 0 × 20.)

2 50 0 0 40 60

3 0 150 50 0 0

4 100 50 100 0 20

5 0 0 0 60 20

104 9 Utility Databases: Representation, Creation, and Statistics

9.3 Practical Representation

A utility database is typically stored as a file on a computer. To effectively create

and manage this file, the following rules should be observed:

• One Transaction per Line: Each line in the file corresponds to a single

transaction. The line number implicitly serves as the transaction identifier (t id),

so it is not explicitly stored in the file, which helps save space and reduce

processing costs.

• Three Components of a Transaction: Each transaction consists of three

components. The first component lists the items involved in the transaction. The

second component presents the sum of the utility values of all items in that

transaction. The final component contains the individual utility values for each

item in the respective transaction.

• Separator for the Components: A colon delimiter must separate the three

components of each transaction. Users cannot alter this delimiter.

• Separator for the Elements in a Component: The elements within a component

can be separated by any delimiter, such as a tab, space, or comma. In the

algorithms used in PAMI, a tab is considered the default delimiter for items or

utility values within a component.

Overall, the format of a transaction in a utility database is

. item1〈sep〉item2〈sep〉 · · · : totalUtility : utility1〈sep〉utility2〈sep〉 · · ·

Example 9.4 If the delimiter is a tab, the utility database shown in Table 9.1c

would appear as follows:

Bread Jam Butter:300:100 50 150

Bread Book Pen:150:50 40 60

Jam Butter:200:150 50

Bread Jam Butter Pen:270:100 50 100 20

Book Pen:80:60 20

•> Important

The “colon” is the default separator used to divide the components of a transaction,

and users cannot change this separator.

•> Important

The “tab” is the default separator used to split items or values within the component

of a transaction, but users can modify this separator.

9.5 Deriving a Utility Database from a Dataframe 105

9.4 Creating Synthetic Utility Databases

The PAMI package provides a powerful and flexible tool for generating synthetic

utility databases, which can be tailored to meet various requirements. This capability

is precious for testing and developing algorithms in data mining and related fields.

Users can customize the database based on their specific needs, including the

number of transactions, the total number of items, average transaction length, and

several other utility parameters.

To illustrate the process of creating a synthetic utility database, consider the fol-

lowing sample code. This example generates a database with 100,000 transactions,

each containing an average of 10 items selected from a set of 1000 possible items:

Program 1: Generating a Synthetic Utility Database

1 from PAMI.extras.syntheticDataGenerator import UtilityDatabase

as db→֒

2 obj = db.UtilityDatabase(databaseSize=100000,

avgItemsPerTransaction=10, numItems=1000,

minInternalUtilityValue=1, maxInternalUtilityValue=100,

minExternalUtilityValue=100, maxExternalUtilityValue=1000,

sep='\t')

→֒

→֒

→֒

→֒

3 obj.create()

4 obj.save('utilityDatabase.csv')

5 utilityDataFrame = obj.getTransactions()

6 print('Runtime: ' + str(obj.getRuntime()))

7 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

8 print('Memory (USS): ' + str(obj.getMemoryUSS()))

9.5 Deriving a Utility Database from a Dataframe

The PAMI package enables users to convert a dataframe into a utility database,

which is ideal for transaction-based data analysis. Below is a Python code snippet

illustrating how to use PAMI for this conversion:

Program 2: Converting a Dataframe into a Utility Database

1 from PAMI.extras.convert import DF2DB as alg

2 import pandas as pd

106 9 Utility Databases: Representation, Creation, and Statistics

3 import numpy as np

4 data = np.random.randint(1, 100, size=(4, 4))

5 dataFrame = pd.DataFrame(data_4x4, columns=['Item1', 'Item2',

'Item3', 'Item4'])→֒

6 obj = alg.DF2DB(dataFrame)

7 obj.convert2UtilityDatabase(oFile='utilityDB.csv')

8 print('Runtime: ' + str(obj.getRuntime()))

9 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

10 print('Memory (USS): ' + str(obj.getMemoryUSS()))

9.6 Understanding the Statistical Details

The dbStats sub-sub-package in the extras sub-package of PAMI provides

users statistical details about a utility database. This functionality is essential for

understanding the properties and characteristics of the database, which can be

crucial for various data analysis tasks. The statistical details provided by dbStats

include:

1. Database size

2. Total number of items in a database

3. Minimum, average, and maximum lengths of the transactions

4. Minimum, average, and maximum utility value of a transaction

5. Standard deviation of transactional sizes

6. Variance in transaction sizes

7. Sparsity

8. Frequencies of the items

9. Distribution of transactional lengths

10. Distribution of items’ utility values

Here is an example of how to use the dbStats to obtain the statistics:

Program 3: Deriving the Statistical Details of Utility Database

1 from PAMI.extras.dbStats import UtilityDatabase as stat

2

3 obj = stat.UtilityDatabase("utilityDatabase.csv")

4 obj.run()

5 obj.printStats()

6 obj.plotGraphs()

9.7 Variants of Utility Databases 107

9.7 Variants of Utility Databases

9.7.1 Temporal Utility Database

A temporal utility database [2] generalizes the basic (transactional) utility database

by ordering the transactions with respect to a timestamp. The time gap between

all the transactions remains constant in the utility database; we call that database a

uniform temporal utility database. If the time gap between the transactions varies

in the utility database, we call that database a nonuniform temporal utility database.

One can convert any transactional utility database into a temporal utility database

by simply concatenating the timestamp at the beginning of the transaction.

Overall, the format of a transaction in a temporal utility database is

. timestamp〈sep〉item1〈sep〉 · · · : totalUtility : utility1〈sep〉 · · ·

Example 9.5 If the delimiter is a tab, a utility database shown in Table 9.1c can

be converted into a temporal utility database as follows:

1 Bread Jam Butter:300:100 50 150

2 Bread Book Pen:150:50 40 60

3 Jam Butter:200:150 50

4 Bread Jam Butter Pen:270:100 50 100 20

5 Book Pen:80:60 20

9.7.2 Geo-referenced Transactional Utility Database

A geo-referenced transactional utility database [3] contains items with spatial

information, such as points, lines, and polygons. Overall, the format of a transaction

in a geo-referenced transactional utility database is

coordinates1〈sep〉coordinates2〈sep〉coordinates3〈sep〉 · · · : totalUtili ty .:

utility1〈sep〉utility2〈sep〉utility3〈sep〉 · · · .

A sample geo-referenced transactional utility database with a tab delimiter is

POINT(0 1) POINT(2 1) POINT(1 0):4:1 2 1

POINT(0 1) POINT(1 0) POINT(1 2):10:2 6 2

POINT(2 1) POINT(1 2) POINT(1 1) POINT (1 5):8:1 4 2 1

POINT(0 1) POINT(1 0) POINT(1 1) POINT (1 5):10:1 6 1 1

POINT(0 1) POINT(1 1) POINT(1 5) POINT(1 6):20:6 6 10 2

POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5):15:1 1 6 6

POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5):6:2 2 1 1

108 9 Utility Databases: Representation, Creation, and Statistics

9.7.3 Geo-referenced Temporal Utility Database

A geo-referenced temporal utility database is a temporal utility database containing

items with spatial information, such as points, lines, and polygons. Overall, the

format of a transaction in a geo-referenced temporal utility database is

t imestamp〈sep〉coordinates1〈sep〉coordinates2〈sep〉coordinates3〈sep〉 · · · :.

totalUtility : utility1〈sep〉utility2〈sep〉utility3〈sep〉 · · · .

A sample geo-referenced temporal utility database with a tab delimiter is

1 POINT(0 1) POINT(2 1) POINT(1 0):4:1 2 1

2 POINT(0 1) POINT(1 0) POINT(1 2):10:2 6 2

3 POINT(2 1) POINT(1 2) POINT(1 1) POINT(1 5):8:1 4 2 1

4 POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5):10:1 6 1 1

5 POINT(0 1) POINT(1 1) POINT(1 5) POINT(1 6):20:6 6 10 2

6 POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5):15:1 1 6 6

7 POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5):6:2 2 1 1

9.8 Conclusion

This chapter has provided a comprehensive overview of utility databases, covering

both their theoretical foundations and practical applications. We started with a

formal definition of utility databases, explaining how transactions are structured and

identified through set theory. Next, we examined the practical aspects of storing and

managing these databases on computing devices, including the rules for formatting

and storing transactions. We also explored methods for generating synthetic utility

databases, essential for testing and benchmarking data mining algorithms. Addi-

tionally, we discussed techniques for converting structured dataframes into utility

databases, broadening the data analysis scope. Finally, we analyzed how to derive

and interpret statistical details of utility databases, enhancing our understanding of

their properties and optimizing their usage.

References

1. R. Uday Kiran, T. Yashwanth Reddy, Philippe Fournier-Viger, Masashi Toyoda, P. Krishna

Reddy, Masaru Kitsuregawa: Efficiently Finding High Utility-Frequent Itemsets Using Cutoff

and Suffix Utility. PAKDD (2) 2019: 191–203.

2. Pradeep Pallikila, Pamalla Veena, R. Uday Kiran, Ram Avatar, Sadanori Ito, Koji Zettsu, P.

Krishna Reddy: Discovering Top-k Spatial High Utility Itemsets in Very Large Quantitative

Spatiotemporal databases. IEEE BigData 2021: 4925-4935

3. Sai Chithra Bommisetty, Penugonda Ravikumar, Rage Uday Kiran, Minh-Son Dao, Koji Zettsu:

Discovering Spatial High Utility Itemsets in High-Dimensional Spatiotemporal Databases.

IEA/AIE (1) 2021: 53-65

Chapter 10

Pattern Discovery in Utility Databases

Abstract This chapter explores the analytical process of mining high utility

patterns from utility databases, emphasizing the significance and extraction of

meaningful patterns based on their utility. It introduces key concepts, such as utility

calculation for items and patterns within transactions, and discusses the challenge

of large search space in pattern mining. Techniques like the EFIM algorithm are

highlighted to discover high utility patterns efficiently. Additionally, the chapter

extends to high utility frequent pattern mining, which integrates both utility and

support constraints to refine pattern discovery by excluding infrequent but high

utility patterns. The HUIM algorithm is also demonstrated with a practical Python

implementation, providing a robust framework for mining utility databases and

uncovering critical insights for real-world applications.

10.1 Introduction

The previous chapter provided a comprehensive overview of utility databases,

covering their construction, practical representation, and methods for deriving

statistical insights. This chapter focuses on the analytical dimension, extracting and

analyzing meaningful patterns within a utility database.

This chapter delves into the following topics:

1. High utility pattern discovery: We will define the notion of high utility patterns

that might exist in a utility database.

2. High utility frequent pattern discovery: This subsection describes the model

of finding high utility frequent patterns in a utility database.

Chapter 9 introduced the foundational concepts of utility databases, including

key terms such as “pattern,” “transaction,” and “utility database.” We will continue

using these terms consistently throughout this chapter to streamline the discussion

and minimize redundancy. For readers who may have missed the previous chapter,

we recommend reviewing at least Sect. 9.2 to familiarize themselves with the

essential concepts and terminologies.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_10

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_10
https://doi.org/10.1007/978-981-96-6791-8_10
https://doi.org/10.1007/978-981-96-6791-8_10
https://doi.org/10.1007/978-981-96-6791-8_10
https://doi.org/10.1007/978-981-96-6791-8_10
https://doi.org/10.1007/978-981-96-6791-8_10
https://doi.org/10.1007/978-981-96-6791-8_10
https://doi.org/10.1007/978-981-96-6791-8_10
https://doi.org/10.1007/978-981-96-6791-8_10
https://doi.org/10.1007/978-981-96-6791-8_10
https://doi.org/10.1007/978-981-96-6791-8_10

110 10 Pattern Discovery in Utility Databases

10.2 High Utility Patterns

High utility patterns [1] are an essential class of regularities that can be identified

within the utility databases. This section delves into finding high utility patterns in

detail, emphasizing their importance for effectively mining and analyzing patterns

related to user preferences and activities. Knowledge of high utility patterns is

essential for uncovering critical relationships within the data and serves as the basis

for more advanced pattern mining techniques.

10.2.1 Basic Model

We introduce the model of high utility patterns based on the terminology of the

utility database described in Sect. 9.2. Examples are illustrated using the data in

Table 9.1.

Definition 10.1 (Utility of an Item in a Transaction) The utility of an item jk .

in a transaction Ti ., denoted as u(jk, Ti)., represents the product of its external and

internal utility values. That is, u(jk, Ti) = eu(jk) × f (jk, Ti)..

Example 10.1 Continuing with the previous example, the utility (or income)

of an item Bread in the first t ransaction, i.e., u(Bread, T1) = eu(Bread) ×

f (Bread, T1) = 50 × 2 = 100 Rs ..

Definition 10.2 (Utility of a Pattern in a Transaction) The utility of a pattern X

in a transaction Ti . is denoted as u(X, Ti) = �jk∈Xu(jk, Ti). if X ⊆ Ti ..

Example 10.2 The set of items “Bread” and “Jam,” i.e., {Bread, Jam}., is a

pattern. The utility (or income) of {Bread, Jam}. in T1 ., u({Bread, Jam}, T1) =

u(Bread, T1) + u(Jam, T1) = 100 + 50 = 150 Rs ..

Definition 10.3 (Utility of a Pattern in a Database) The utility of a pattern X in

the database UD, denoted as u(X) = �Ti∈g(X)u(X, Ti)., where g(X)., is the set of

transactions containing X.

Example 10.3 In Table 9.1, {Bread, Jam}. has appeared in the transactions whose

t ids are 1 and 4. Therefore, g({Bread, Jam}) = {T1, T4}.. The utility (or income)

of {Bread, Jam}. in each of these transactions, i.e., u({Bread, Jam}, T1) =

150. and u({Bread, Jam}, T4) = 150.. Therefore, the utility (or income) o f

{Bread, Jam}. in the entire database, i.e., u({Bread, Jam}) = 150 + 150 =

300 Rs ..

Definition 10.4 (High Utility Pattern) A pattern X is a high utility pattern if its

u(X) ≥ minUtil ., where minUtil represents the user-specified minimum utility

value. A high utility pattern X is expressed as X [utility = u(X)]..

10.2 High Utility Patterns 111

Example 10.4 If the user-specified minUtil = 250., then the pattern

{Bread, Jam}. is a high utility pattern because u({Bread, Jam}) ≥ minUtil ..

This pattern is expressed as {Bread, Jam} [utility = 300]..

10.2.2 Search Space

The space of items in a utility database raises an itemset lattice. This lattice

represents the search space of high utility pattern mining. Thus, the search space

size is 2n − 1,.where n represents the total number of items in a database. This vast

search space followed the inability to employ the Apriori property to reduce the

search space, making the high utility pattern mining a computationally expensive

task. To make high utility pattern mining practicable on huge databases, its mining

algorithms employ different upper-bound utility measures, such as total utility,

remaining utility, and local utility, to reduce the search space considerably .

10.2.3 Finding High Utility Patterns

Several algorithms, such as EFIM, HMiner, and UPGrowth, were described in

the literature to find high utility patterns. Although no universally acceptable best

algorithm exists for finding these patterns in any utility database, most researchers

utilize the EFIM as it was generally found to be faster than the other algorithms.

Below is a sample Python script for finding high utility patterns using the EFIM

algorithm available in the PAMI package.

Program 1: High Utility Pattern Discovery Using EFIM

1 from PAMI.highUtilityPattern.basic import EFIM as alg

2 obj = alg.EFIM(iFile='Utility_T10I4D100K.csv', minUtil=10000,

sep='\t')→֒

3 obj.mine() #start the mining process

4 obj.save('utilityPatterns.txt') #save the patterns

5 utilityPatternsDF= obj.getPatternsAsDataFrame()

6 print('# patterns: ' + str(len(utilityPatternsDF)))

7 print('Runtime: ' + str (obj.getRuntime()))

8 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

9 print('Memory (USS): ' + str(obj .getMemoryUSS()))

112 10 Pattern Discovery in Utility Databases

10.3 High Utility Frequent Patterns

Since the basic model of high utility patterns determines a pattern’s interestingness

without considering its support within the data, uninteresting patterns with very

low support may be generated as high utility patterns. Many high utility patterns

were uninteresting, often appearing infrequently in the data. To prune the high

utility patterns that have appeared infrequently in the data, the researchers extended

the basic model of high utility pattern mining to find high utility frequent patterns

[2] by considering additional constraints, namely minimum support (minSup). We

now describe the extended model of high utility frequent patterns and describe the

process of finding them.

10.3.1 Basic Model

Definition 10.5 (Support of a Pattern) Let P ⊆ J . be a pattern. The support of P .

in a utility database UD . is defined as

. sup(P) =
freq(P)

|UD|
,

where freq(P). denotes the frequency of pattern P . in UD ., and |UD|. represents the

total number of transactions in the database.

Example 10.5 In Table 9.1, the high utility pattern {Bread, Jam}. has appeared in

the transactions whose t ids are 1 and 4. Thus, the frequency of {Bread, Jam}. is 2.

The support of {Bread, Jam}., i.e., sup({Bread, Jam}) = 2
5

= 0.4(= 40%)..

Definition 10.6 (High Utility Frequent Pattern) A high utility pattern P is

considered to be a high utility frequent pattern if s(P) ≥ minSup ., where minSup

represents the user-specified minimum support. A high utility frequent itemset P is

expressed as P [support = s(P), utility = u(P)]..

Example 10.6 If minSup = 0.3., then the high utility pattern {Bread, Jam}. is

said to be a high utility frequent pattern because s({Bread, Jam}) ≥ minSup ..

This pattern is expressed as {Bread, Jam} [support = 0.4, utility = 300]..

10.3.2 Search Space

The search space of high utility frequent pattern mining is 2n − 1., the same as that

of the high utility pattern mining. We can effectively reduce the search space using

the anti-monotonic property of the support measure. Overall, high utility frequent

pattern mining is computationally less expensive than the high utility pattern mining.

10.4 Conclusion 113

10.3.3 Finding High Utility Frequent Patterns

An efficient algorithm, namely high utility itemset mining (HUIM), has been

described in the literature to find high utility frequent patterns. Below is a sample

Python script for finding high utility frequent patterns using the HUIM algorithm

available in the PAMI package.

Program 2: High Utility Frequent Pattern Discovery Using HUIM

1 from PAMI.highUtilityFrequentPattern.basic import HUFIM as alg

2 obj = alg.HUFIM(iFile='Utility_T10I4D100K.csv', minUtil=10000,

minSup=500, sep='\t')→֒

3 obj.mine()

4 obj.save('utilityFrequentPatternsAtMinSup.txt')

5 utilityFPDF= obj.getPatternsAsDataFrame()

6 print('Total No of patterns: ' + str(len(utilityFPDF)))

7 print('Runtime: ' + str(obj. getRuntime()))

8 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

9 print('Memory (USS): ' + str(obj. getMemoryUSS()))

10.4 Conclusion

In this chapter, we explored the analytical dimension of utility databases by focusing

on high utility pattern discovery and its various extensions. High utility patterns are

essential for uncovering significant relationships within data, enabling the extraction

of patterns based on their utility rather than their frequency alone. We introduced

the basic model for high utility patterns, highlighting how the utility of items and

patterns is calculated in individual transactions and across the entire database.

We discussed the importance of employing upper-bound utility measures to

reduce computational complexity and demonstrated how the EFIM algorithm can

efficiently find high utility patterns. In the second part of the chapter, we explored

the concept of high utility frequent patterns, an extension that incorporates both

utility and frequency constraints. This approach allows for the discovery of valuable

and frequent patterns, thus refining the results by eliminating infrequent patterns

that may not be of practical significance. The chapter concluded with a Python

implementation of the HUIM algorithm to find high utility frequent patterns.

114 10 Pattern Discovery in Utility Databases

References

1. Cheng-Wei Wu, Philippe Fournier-Viger, Philip S. Yu, Vincent S. Tseng: Efficient Mining of a

Concise and Lossless Representation of High Utility Itemsets. ICDM 2011: 824-833

2. R. Uday Kiran, T. Yashwanth Reddy, Philippe Fournier-Viger, Masashi Toyoda, P. Krishna

Reddy, Masaru Kitsuregawa: Efficiently Finding High Utility-Frequent Itemsets Using Cutoff

and Suffix Utility. PAKDD (2) 2019: 191–203.

Chapter 11

Sequence Databases: Representation,
Creation, and Statistics

Abstract Sequence databases, an extension of transactional databases, store

ordered collections of transactions, making them invaluable for applications in

healthcare, e-commerce, and web analytics. These databases structure transactions

sequentially, often based on time or customer behavior, to reveal patterns that can

drive socioeconomic development. This chapter introduces sequence databases

by defining their mathematical representation through set theory, followed by an

exploration of practical storage and implementation techniques. It details methods

for generating synthetic sequence databases, which facilitate benchmarking and

algorithm testing, and explains how to convert dataframes into sequential databases

for broader analysis. Additionally, the chapter introduces statistical procedures for

extracting critical insights, such as item frequencies and sequence length variations,

from sequence databases. By combining theoretical foundations with practical

applications, this chapter equips readers with essential tools for managing and

analyzing sequential data, setting the stage for advanced data mining and analysis

techniques.

11.1 Introduction

A structured certain binary sequential database, or simply a sequence database, is

a variant of a transactional database, where transactions are grouped and ordered

based on a metric, say t imestamp or customer identif ier .. Many real-world

applications, such as healthcare, weblogs, and e-commerce, naturally produce

transactional databases that can be represented as a sequence database. Useful

information that can empower the end users to achieve socioeconomic development

lies hidden in this data.

This chapter covers the following key aspects of sequence databases:

1. Theoretical Representation: The formal definition of a sequence database using

set theory

2. Practical Representation: How computer systems implement and store

sequence databases

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_11

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_11
https://doi.org/10.1007/978-981-96-6791-8_11
https://doi.org/10.1007/978-981-96-6791-8_11
https://doi.org/10.1007/978-981-96-6791-8_11
https://doi.org/10.1007/978-981-96-6791-8_11
https://doi.org/10.1007/978-981-96-6791-8_11
https://doi.org/10.1007/978-981-96-6791-8_11
https://doi.org/10.1007/978-981-96-6791-8_11
https://doi.org/10.1007/978-981-96-6791-8_11
https://doi.org/10.1007/978-981-96-6791-8_11
https://doi.org/10.1007/978-981-96-6791-8_11

116 11 Sequence Databases: Representation, Creation, and Statistics

3. Synthetic Database Creation: Techniques for generating synthetic sequence

databases for testing and benchmarking

4. Dataframe Conversion: Methods to convert structured dataframes into sequen-

tial databases for broader data analysis applications

5. Database Statistics: How to derive statistical details about a sequence database

11.2 Theoretical Representation

A sequence represents an ordered collection of transactions. A sequential database

[1] represents a collection of sequences. Formally:

Let O = {o1, o2, · · · , on}, n ≥ 1,. be a set of items (or objects). Let G ⊆ O .

be a pattern (or an itemset). A pattern containing k number of items is a k-pattern.

Let |G|. denote the cardinality of a pattern, i.e., |G| = k .. Without loss of generality,

let us assume there exists a total order on objects ≻., say lexicographical order.

A sequence, denoted as sa, a ≥ 1,. is an ordered list of itemsets. That is, sa =

{G1,G2, · · · ,Gp}, p ≥ 1.. A sequence sa . is said to be an α .-sequence if it contains

a α . number of items, i.e., α = |Gx |∀Gx ∈ sa .. A sequence database, denoted as

SDB,. is a list of sequences. That is, SDB = {s1, s2, · · · , sq} = ∪
q

sid=1ssid ,. where

q ≥ 1. and sid ≥ 1. denotes the sequence identifier. The size (or cardinality) of a

sequence database, denoted as |SDB| = q,. where q represents the total number of

sequences in a database.

Example 11.1 Let O = {a, b, c, d, e, f, g}. be a set of items. The set of items

a and b, i.e., {a, b}. (or ab, in short), is a pattern. This pattern contains two

items. Henceforth, it is a 2-pattern with the cardinality of 2 (= |ab|).. Le t a ≻

b ≻ b ≻ c ≻ d ≻ e ≻ f ≻ g . be the lexicographical order of items. A

sequence s1 = 〈 ab, c, ef 〉. represents the sequential occurrence order of three

patterns. This sequence contains five distinct items. Hence, it is a 5-sequence. A

hypothetical hourly sales transactional database containing these five items is shown

in Table 11.1a. This database can be shown as a sequence database as in Table 11.1b.

This sequence database contains four sequences. Henceforth, the size of SDB, i.e.,

|SDB| = 4..

11.3 Practical Representation

A sequential database is usually stored as a file on a computer. To properly create

and manage this file, follow these rules:

• One Sequence per Line: Each line in the file represents a single sequence. The

line number implicitly acts as the sequence identifier (sid), so it is not explicitly

stored in the file to save space and reduce processing costs.

11.4 Creating Synthetic Sequence Databases 117

Table 11.1 Hypothetical transactional database of a supermarket

(a) Hypothetical hourly sales data (b) Sequence database

Hour TID Items Hour TID Items

1 1 ab 3 8 d

1 2 c 3 9 abde

1 3 def 3 10 ac

2 4 ad 4 11 ab

2 5 cd 4 12 c

2 6 af 4 13 aeg

3 7 bc 4 14 df

sid Sequences

1 〈 ab, c, de f 〉.

2 〈 ad, cd, a f 〉.

3 〈 bc, d, abde, a c〉.

4 〈 ab, c, aeg, df 〉.

• Patterns Separated by a Delimiter: The patterns in a sequence are separated by

a colon. Users cannot overwrite this delimiter.

• Unique Items per Pattern: Each item should appear only once within a pattern.

However, an item can appear any number of times in a sequence.

• Items Separated by a Delimiter in a Pattern: Items in a pattern are separated

by a delimiter, such as a space or tab. The PAMI algorithms use a tab as the

default delimiter, but users can choose other delimiters like commas or s paces.

Overall, the format of a sequence in a sequential is

. item1〈sep〉item2〈sep〉item3 : item1〈sep〉item2 : · · ·

Example 11.2 If the delimiter is a tab, the sequential database shown in

Table 11.1b would look like this:

a b:c:d e f

a d:c d:a f

b c:d:a b d e:a c

a b:c:a e g:d f

11.4 Creating Synthetic Sequence Databases

The PAMI package offers a powerful and flexible tool for generating synthetic

sequential databases tailored to various needs. This capability is invaluable for

testing and developing algorithms in data mining and related fields. Users can

customize the database to suit their specific requirements, including the number

of transactions, the total number of items, and the average transaction length.

To illustrate the creation of a synthetic sequential database, consider the follow-

ing sample code.

118 11 Sequence Databases: Representation, Creation, and Statistics

Program 1: Generating Synthetic Sequential Database

1 from PAMI.extras.syntheticDataGenerator import

SequentialDatabase as db→֒

2 obj = db.SequentialDatabase(databaseSize=100000,

avgItemsPerPatterns=10, avgPatternsPerSequence=10,

numItems=1000, sep='\t')

→֒

→֒

3 obj.create()

4 obj.save('sequentialDatabase.csv')

5 #read the generated sequences into a dataframe

6 sequentialDataFrame=obj.getSequences()

7 #stats

8 print('Runtime: ' + str (obj.getRuntime()))

9 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

10 print('Memory (USS): ' + str(obj. getMemoryUSS()))

11.5 Deriving a Sequence Database from a Dataframe

The PAMI package enables users to convert a dataframe into a sequence database,

which is ideal for transaction-based data analysis. Below is a Python code snippet

illustrating how to use PAMI for this conversion:

Program 2: Converting a Dataframe into a Utility Database

1 from PAMI.extras.convert import DF2DB as alg

2 import pandas as pd

3 import numpy as np

4 data = np.random.randint(1, 100, size=(4, 4))

5 dataFrame = pd.DataFrame(data, columns=['Item1', 'Item2',

'Item3', 'Item4'])→֒

6

7 customerID= np.random.randint(1, 3, size=(4, 1))

8 customerIDdataFrame = pd.DataFrame(customerID,

columns=['customerID'])→֒

9

10 dataFrame = pd.concat([customerIDdataFrame, dataFrame],

axis=1)→֒

11

12 obj = alg .DF2DB(dataFrame)

11.6 Knowing the Statistical Details 119

13

14 obj.convert2SequenceDatabase(oFile='sequentialDatabase.csv',

condition='>=', value=20)→֒

15 print('Runtime: ' + str(obj.getRuntime()))

16 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

17 print('Memory (USS): ' + str (obj.getMemoryUSS()))

11.6 Knowing the Statistical Details

The stats sub-sub-package in the extras sub-package of PAMI provides users

with statistical details about a sequential database. This functionality is essential

for understanding the properties and characteristics of the database, which can be

crucial for various data analysis tasks. The statistical details provided by stats

include:

1. Database size

2. Total number of items in a database

3. Minimum, average, and maximum lengths of the sequences

4. Standard deviation of sequence sizes

5. Variance in sequence sizes

6. Sparsity

7. Frequencies of the items

8. Distribution of transactional lengths

Here is an example of how to use the dbStats to obtain the statistics:

Program 2: Deriving the Statistical Details

1 from PAMI.extras.stats import SequentialDatabase as stat

2

3 obj = stat.SequentialDatabase("sequentialDatabase.csv")

4 obj.run()

5 obj.printStats()

6

7 obj.plotGraphs()

120 11 Sequence Databases: Representation, Creation, and Statistics

11.7 Conclusion

This chapter has provided a comprehensive overview of sequence databases, from

their theoretical underpinnings to practical applications. We began with a formal

definition of sequence databases, detailing how sequences are structured and

identified using set theory. We then explored the practical aspects of how these

databases are stored and managed on computing devices, including the rules for

formatting and storing transactions.

We also discussed methods for generating synthetic sequence databases, which

are crucial for testing and benchmarking data mining algorithms. Finally, we

examined how to derive and interpret statistical details of sequential databases to

better understand their properties and optimize their usage.

Understanding these concepts and techniques equips users with the tools to man-

age, analyze, and leverage sequential databases in various real-world applications.

The combination of theoretical knowledge and practical skills discussed here lays

the foundation for advanced data analysis.

References

1. Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:

A Survey of Parallel Sequential Pattern Mining. ACM Trans. Knowl. Discov. Data 13(3): 25:1–

25:34 (2019)

Chapter 12

Pattern Discovery in Sequence Databases

Abstract Sequential pattern mining is a powerful analytical tool used to uncover

significant patterns within ordered data, enabling insights into recurring trends and

behaviors. This chapter delves into the discovery of frequent sequence patterns

in sequential databases, a process valuable across domains such as e-commerce,

bioinformatics, and web usage analysis. We begin with foundational definitions

and introduce the concept of sequence support as a measure of pattern significance.

Leveraging the minimum support constraint, we discuss strategies to reduce search

space and examine the well-known GSP algorithm to facilitate efficient pattern

discovery. A practical implementation using the GSP algorithm offers insights into

memory and runtime considerations critical for large datasets. This chapter equips

readers with the algorithms needed to perform effective sequence pattern mining by

combining theoretical foundations with practical applications, thereby enhancing

data-driven decision-making in complex sequential datasets.

12.1 Introduction

The previous chapter provided a comprehensive overview of sequential databases,

covering their construction, practical representation, and methods for deriving

statistical insights. This chapter focuses on the analytical dimension, extracting

and analyzing meaningful patterns, especially frequency sequence patterns, within

sequential data.

Chapter 10 introduced the foundational concepts of sequential databases, includ-

ing key terms such as “pattern,” “sequence,” and “sequential database.” We will

continue using these terms consistently throughout this chapter to streamline the

discussion and minimize redundancy. For readers who may have missed the previ-

ous chapter, we recommend reviewing at least Sect. 11.2 to familiarize themselves

with the essential concepts and terminologies.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_12

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 12&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_12
https://doi.org/10.1007/978-981-96-6791-8_12
https://doi.org/10.1007/978-981-96-6791-8_12
https://doi.org/10.1007/978-981-96-6791-8_12
https://doi.org/10.1007/978-981-96-6791-8_12
https://doi.org/10.1007/978-981-96-6791-8_12
https://doi.org/10.1007/978-981-96-6791-8_12
https://doi.org/10.1007/978-981-96-6791-8_12
https://doi.org/10.1007/978-981-96-6791-8_12
https://doi.org/10.1007/978-981-96-6791-8_12
https://doi.org/10.1007/978-981-96-6791-8_12

122 12 Pattern Discovery in Sequence Databases

12.2 Frequent Sequence Patterns

12.2.1 Basic Model

Definition 12.1 Let sp = 〈A1, A2, · · · , Au〉. and sq = 〈B1, B2, · · · Bu · · ·Bv〉.,

where p �= q . and 1 ≤ u ≤ v.. We say that sp . is contained (or occurs) in Sq .,

i.e., sp ⊑ sq ., if and only if there exist integers 1 ≤ h1 ≤ h2 ≤ · · · ≤ hu ≤ v . such

that A1 ⊆ Bh1 , A2 ⊆ Bh2 , · · · , Au ⊆ Bhu ..

Example 12.1 Let sx = 〈ab, c〉. be a sequence. This sequence is contained in

〈ab, c, def 〉., which is s1 . in Table 11.1b. Henceforth, sx . is a subsequence of s1 .,

denoted as sx ⊑ s1..We can also state sx . occurs in s1 . for simplicity purpose.

Definition 12.2 (The Support of a Sequence) The support of a sequence sp . in a

sequence database SDB is defined as the number of sequences that contain sp,. and

is denoted by sup(sp).. That is, sup(sp) = |s|s ⊑ sp ∧ s ∈ SDB|.. Please note that

the support of a sequence can also be expressed in percentage of |SDB|..

Example 12.2 Continuing the previous example, the sequence sx . occurs in s1 . and

s4 . of Table 11.1b. Henceforth, the support of sx ., i.e., sup(sx) = |{s1, s4}| = 2..

Definition 12.3 (A Frequent Sequence Pattern [1]) A sequence sp . is said to a

frequent sequence pattern if sup(sp) ≥ minSup,. where minSup represents the

user-specified minimum support va lue.

Example 12.3 If the user-specified minSup = 2., then the sequence sx . is said to

be a frequent sequence pattern as sup(sx) ≥ minSup .. Similarly, another sequence,

sy = 〈ab, d〉., which occurs in s1 . and s4 . of Table 11.1b and has support of 2, is also

said to be a frequent sequence pattern as sup(sy) ≥ minSup ..

12.2.2 Search Space

The sequence lattice is derived from the space of itemsets and serves as the search

space for mining sequential patterns. Here, the search space for sequence pattern

mining is quantified as nk
., where k signifies the maximum sequence length and n

denotes the aggregate count of items in the database. One can effectively reduce this

colossal search space using the anti-monotonic property of the minSu p constraint.

12.2.3 Mining Algorithm

The literature describes several algorithms, such as PrefixSpan [2], SPAM [3],

and SPADE [4], for finding frequent sequence patterns in the data. Although no

universally acceptable best algorithm exists for finding these patterns in a sequential

References 123

database, most researchers utilize the GSP algorithm, which was generally faster

than the other algorithms. Below is a sample Python script for finding frequent

sequence patterns using the GSP algorithm available in the PAMI package.

Program 1: Frequent Sequence Pattern Discovery Using GSpan

obj = alg.GSP('airDatabase.txt', minSup, '\t')

obj.mine()

Retrieve discovered patterns and resource usage

Patterns = obj.getPatterns()

print("Total number of Frequent Sequence Patterns:",

len(Patterns))

Display memory and runtime statistics

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS", memRSS)

runTime = obj.getRuntime()

print("Total ExecutionTime in ms:" , runTime)

12.3 Conclusion

This chapter examined the process of identifying frequent sequence patterns in

sequential databases, highlighting their significance in fields like market analysis,

web usage mining, and bioinformatics. We defined vital concepts such as sequence

support and frequent patterns and explored methods to efficiently reduce search

space using the minimum support constraint. We have also described a procedure to

find the frequent sequence patterns using the GSP algorithm. This chapter provided

theoretical insights and practical tools, equipping researchers and practitioners to

leverage sequential pattern mining for meaningful insights and predictive analytics

in complex data environments.

References

1. Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:

A Survey of Parallel Sequential Pattern Mining. ACM Trans. Knowl. Discov. Data 13(3): 25:1–

25:34 (2019)

124 12 Pattern Discovery in Sequence Databases

2. Jian Pei, Jiawei Han, B. Mortazavi-Asl, Jianyong Wang, H. Pinto, Qiming Chen, U. Dayal, and

Mei-Chun Hsu. 2004. Mining sequential patterns by pattern-growth: the PrefixSpan approach.

IEEE TKDE 16, 11 (2004), 1424–1440.

3. Jay Ayres, Johannes Gehrke, Tomi Yiu, and Jason Flannick. 2002. Sequential PAttern Mining

using A Bitmap Representation. ACM SIGKDD (07 2002).

4. Mohammed J Zaki. 2001. SPADE: An efficient algorithm for mining frequent sequences.

Machine learning 42 (2001), 31–60.

Part II

Advanced Concepts

Chapter 13

Mining Symbolic Sequences

Abstract Symbolic sequence databases are widely used in fields such as bioinfor-

matics, where analyzing DNA, RNA, and protein sequences is critical for under-

standing diseases and developing new drugs. This chapter presents an overview

of symbolic sequence databases, focusing on their mathematical, practical repre-

sentations and methods for generating and analyzing synthetic sequence data. We

also explore techniques for discovering frequent contiguous patterns in symbolic

sequences, essential for uncovering hidden relationships and insights within large

datasets. The chapter introduces the PAMI library, which implements powerful

tools such as the PositionMining algorithm for mining frequent contiguous

patterns. These tools, along with database statistics and synthetic data generation

capabilities, provide a comprehensive framework for researchers to analyze and

extract meaningful patterns from symbolic sequence data.

13.1 Intro duction

This chapter introduces symbolic sequence databases, which store continuous

sequences of symbols or characters—data crucial for bioinformatics applications,

such as analyzing DNA, RNA, and protein interactions to understand diseases and

aid in drug development better. The key topics covered in this chapter are:

1. Theoretical Representation: Establishes a formal definition of a symbolic

sequence database using set theory.

2. Practical Representation: Describes how sequence databases are implemented

and stored in computer systems, focusing on the practical aspects of data

handling.

3. Synthetic Database Creation: Explains methods for generating synthetic sym-

bolic sequence databases, allowing researchers to test and benchmark algorithms

in controlled environments.

4. Database Statistics: Outlines statistical approaches to derive insights from

sequence databases, including details on symbolic sequence length distributions,

data variation, and other statistical properties.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_13

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 13&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_13
https://doi.org/10.1007/978-981-96-6791-8_13
https://doi.org/10.1007/978-981-96-6791-8_13
https://doi.org/10.1007/978-981-96-6791-8_13
https://doi.org/10.1007/978-981-96-6791-8_13
https://doi.org/10.1007/978-981-96-6791-8_13
https://doi.org/10.1007/978-981-96-6791-8_13
https://doi.org/10.1007/978-981-96-6791-8_13
https://doi.org/10.1007/978-981-96-6791-8_13
https://doi.org/10.1007/978-981-96-6791-8_13
https://doi.org/10.1007/978-981-96-6791-8_13

128 13 Mining Symbolic Sequences

5. Pattern Discovery: Details techniques for identifying frequent contiguous pat-

terns within symbolic sequence data, essential for detecting biologically signifi-

cant motifs or anomalies.

These sections offer theoretical foundations and practical tools, guiding readers

through essential concepts and methods for working with symbolic sequence

databases.

13.2 Theoretical Representation

A symbolic sequence is an ordered collection of symbols (or characters). Formally:

let � = {A,B, · · · , Z}. represent the set of symbols (also known as the alphabets).

A sequence S is defined as an ordered arrangement of these symbols, expressed a s

S = 〈s1, s2, . . . , sn〉., where each si ∈ � ., 1 ≤ i ≤ n..

Example 13.1 Let� = {A,C,G, T }.denote the set of DNA alphabets. A sequence

Seq = AT GT CAT G. can be formed by arranging these symbols from � ..

This notation is foundational in bioinformatics, where symbolic sequences like

DNA, RNA, or protein sequences are studied to uncover meaningful patterns and

biological insights.

13.3 Practical Representation

A symbolic sequence is typically stored as a file on a computer. To ensure

consistency and readability, follow these guidelines when creating and managing

the file:

• Enter Sequence in Line: Write the entire sequence of symbols on a single line

without breaks.

• No Delimiter Between the Symbols: Do not insert any delimiters between

consecutive symbols in the sequence.

Thus, the format of a sequence in this representation is

. symbol1symbol2symbol3 · · · symboln

Example 13.2 An example of a symbolic sequence representing a DNA sequence

S = ACT GCAT GCT AT GCAT GC ..

13.4 Creating Synthetic Symbolic Sequence Databases 129

13.4 Creating Synthetic Symbolic Sequence Databases

The PAMI package provides a robust and adaptable tool for generating synthetic

symbolic sequential databases, ideal for testing and developing algorithms in fields

like data mining. Users can customize these databases to meet specific needs, such

as defining the length of a sequence and the total number of symbols, making them

invaluable resources for benchmarking and experimentation.

The following example code demonstrates how to create a synthetic symbolic

sequential database using PAMI:

Program 1: Generating Synthetic Symbolic Sequential Database

from PAMI.extras.syntheticDataGenerator \

import symbolicSequenceDatabase as db

obj = db.symbolicSequenceDatabase(

sequenceSize=100000,

numberOfSymbols=10

)

obj.create()

obj.save('symbolicSequentialDB.csv')

#read the generated sequences into a dataframe

symbolicSequentialDataFrame=obj.getTransactions()

#stats

print('Runtime: ' + str (obj.getRuntime()))

print('Memory (RSS): ' + str(obj.getMemoryRSS()))

print('Memory (USS): ' + str(obj. getMemoryUSS()))

The above code snippet creates a symbolic sequence database of 100,000

symbols using 10 distinct symbols. The generated data is saved to a CSV file and

loaded into a dataframe for further analysis. Additionally, runtime and memory

statistics are printed, providing useful performance metrics for evaluation.

In specific real-world scenarios, users are interested in generating synthetic DNA

and RNA sequences. PAMI library contains programs that facilitate the creation of

synthetic DNA or RNA sequences for users.

Program 2: Generating Synthetic DNA/RNA Database

from PAMI.extras.syntheticDataGenerator \

import NucleotideSequence as db

130 13 Mining Symbolic Sequences

obj = db.NucleotideSequence(

sequenceLength=100000,

gcContent=0.5

)

obj.create()

obj.save('symbolicSequentialDB.csv')

#read the generated sequences into a dataframe

symbolicSequentialDataFrame=obj.getTransactions()

#stats

print('Runtime: ' + str(obj.getRuntime()))

print('Memory (RSS): ' + str(obj.getMemoryRSS()))

print('Memory (USS): ' + str(obj. getMemoryUSS()))

13.5 Knowing the Statistical Details

The dbStats sub-sub-package within the extras package of PAMI allows users

to obtain essential statistical details about a symbolic sequential database. This

functionality is particularly useful for understanding database properties, which

can be critical for various data analysis tasks. The dbStats package provides the

following statistics:

1. Total Number of Symbols: Counts the distinct symbols within the database.

2. Total Size of a Sequence: Calculates the overall length of the sequence.

3. Symbol Frequencies: Determines how frequently each symbol has appeared.

Here is an example demonstrating how to use dbStats to retrieve these s tatistics:

Program 3: Deriving Statistical Details

from PAMI.extras.stats import \

SymbolcSequentialDatabase as stat

Create an instance of the statistical analysis class

obj = stat.SymbolcSequentialDatabase("symbolicSequentialDB.csv")

Run the statistical analysis

obj .run()

13.6 Frequent Contiguous Patterns 131

Print the statistical details

obj.printStats()

Plot graphs for visual analysis

obj .plotGraphs()

In this example, the code loads a previously generated symbolic sequence

database from a CSV file. It then runs a statistical analysis to gather and print

the database’s statistical details. Additionally, it visualizes the data through graphs,

allowing for an insightful look at symbol distributions and sequence characteristics.

13.6 Frequent Contiguous Patterns

13.6.1 Basic Model

Definition 13.1 (Contiguous Pattern) A contiguous pattern P ⊆ S . is formally

defined as 〈sj , sj+1, . . . , sj+k−1〉., where 1 ≤ j ≤ j + k − 1 ≤ n.. This definition

implies that the elements of P . occupy consecutive positions in S .without any gaps,

preserving the order of occurrences of symbols in the original sequence. If |P | = k .,

then P . is called a k-length contiguous pattern.

Example 13.3 Let P = AT G. be a contiguous pattern such that P ⊆ S .. Since P .

contains three alphabets (or |P | = 3.), it is called a 3-length contiguous pattern.

Definition 13.2 (Support of a Pattern) The number of distinct occurrences of P .

in S . represents its support and is denoted as support(P)..

Example 13.4 The pattern P . appears in S . at three locations whose index positions

are (5,7), (10,12), and (14,16). Thus, the support of P . in S ., i.e., support(P) = 3..

Definition 13.3 (Frequent Contiguous Pattern) A contiguous pattern P . is said to

be a frequent contiguous pattern if support(P) ≥ minSup., where minSup is a

hyper-parameter that represents the user-specified minimum support v alue.

Example 13.5 If the user-specified minSup = 2., P . is a frequent contiguous pattern

as support(P) ≥ minSup..

Definition 13.4 (Problem Definition) Given a symbolic sequence database S . and

the user-specified minimum support (minSup), the problem definition of frequent

contiguous pattern mining is to find the complete set of frequent contiguous patterns

in S . that have support no less than the minsup value.

132 13 Mining Symbolic Sequences

13.6.2 Mining Algorithm

Several algorithms have been developed to identify frequent contiguous patterns

in symbolic sequence data. The PAMI library implements the PositionMining

algorithm. The following code demonstrates using PositionMining to discover

frequent contiguous patterns.

Program 4: Frequent Contiguous Pattern Discovery

from PAMI.contiguousFrequentPattern.basic \

import PositionMining as alg

Initialize PositionMining algorithm

obj = alg.PositionMining(iFile='symbolicSequentialDB.csv',\

minSup=100, delimiter='\t')

obj.mine()

Retrieve discovered patterns and resource usage

Patterns = obj.getPatterns()

print("#Frequent Sequence Patterns:",len(Patterns))

Display memory and runtime statistics

memUSS = obj .getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS:", memRSS)

runTime = obj.getRuntime()

print("Total Execution Time in ms:", runTime)

In this example, the PositionMining algorithm is initialized with an input file

containing symbolic sequence data (symbolicSequentialDB.csv), a minimum

support threshold (minSup=100), and a specified delimiter. The algorithm then

mines for frequent contiguous patterns, which are stored in Patterns. Memory

usage and runtime statistics are also displayed, providing insights into the algo-

rithm’s resource requirements.

13.7 Conclusion

This chapter explored symbolic sequence databases, which are essential for bioin-

formatics, data mining, and pattern discovery applications. We covered the theoret-

13.7 Conclusion 133

ical and practical representations of symbolic sequences, techniques for synthetic

database generation, and methods for analyzing database statistics. Additionally,

we introduced contiguous pattern discovery, a powerful approach for identifying

frequently occurring patterns within sequence data, which can reveal significant

insights in large datasets.

Chapter 14

Pattern Discovery in Fuzzy Databases

Abstract This chapter introduces fuzzy databases as an advanced method for

handling and analyzing data with uncertainty, distinguishing them from traditional

transactional databases. By utilizing fuzzy membership functions, fuzzy databases

transform utility databases into representations where data is stored with degrees of

certainty, enabling more flexible analysis. The chapter discusses theoretical repre-

sentations of fuzzy databases, practical considerations for database implementation,

and methods for identifying fuzzy frequent patterns.

14.1 Introduction

This chapter provides an in-depth exploration of fuzzy databases, a type of database

that supports data representation with varying levels of uncertainty, unlike tradi-

tional transactional or temporal databases where data is precisely defined. Fuzzy

databases are derived from utility databases using fuzzy membership functions to

capture the nuanced and uncertain nature of certain data. The chapter covers the

following three core topics:

1. Theoretical Representation: Defines fuzzy transactional databases with formal

mathematical structures, including fuzzy membership functions, fuzzy terms,

and set theory.

2. Practical Representation: Describes the storage and organization of fuzzy

databases in computing systems, focusing on the practical aspects of data

handling.

3. Pattern Discovery: Outlines techniques to identify and analyze frequent fuzzy

patterns within these databases.

This chapter combines theoretical insights with practical approaches, providing

readers with essential tools and methodologies for working with fuzzy databases

and uncovering valuable patterns in uncertain data environments.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_14

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 14&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_14
https://doi.org/10.1007/978-981-96-6791-8_14
https://doi.org/10.1007/978-981-96-6791-8_14
https://doi.org/10.1007/978-981-96-6791-8_14
https://doi.org/10.1007/978-981-96-6791-8_14
https://doi.org/10.1007/978-981-96-6791-8_14
https://doi.org/10.1007/978-981-96-6791-8_14
https://doi.org/10.1007/978-981-96-6791-8_14
https://doi.org/10.1007/978-981-96-6791-8_14
https://doi.org/10.1007/978-981-96-6791-8_14
https://doi.org/10.1007/978-981-96-6791-8_14

136 14 Pattern Discovery in Fuzzy Databases

14.2 Theoretical Representation

Let I = {i1, i2, . . . , im}., where m ≥ 1., be a finite set of m. distinct items

(or attributes). A utility database, UD ., is an ordered collection of transactions

paired with unique transaction identifiers. Each transaction in this database con-

tains items and their corresponding quantities. Specifically, we define UD =

{(1, T1), (2, T2), . . . , (ts, Tts)},. where ts ∈ R
+

. represents a timestamp, and each

transaction Tq ∈ UD ., for 1 ≤ q ≤ ts ., is a subset of I . that contains multiple items

with associated purchase quantities viq . for each item iq ∈ Tq ..

Example 14.1 Let I = {a, b, c, d, e, f }. be the set of items (or sensors measuring

the concentrations of an air pollutant, say PM2.51). A hypothetical utility database

generated from recording the items in I . is shown in Table 14.1. This database

contains 12 transactions. Each transaction in this database is associated with a

transaction identifier (t id .). In the first transaction, (1, {a : 60, b : 65, d : 55})., 1.

represents the transactional identifier, and {a : 60, b : 65, d : 55}. represents the

transaction containing items and their associated quantities. This means that the

sensors a, b,. and d . have recorded the PM2.5 values of 60, 65, and 55, respectively.

Other sensors have not recorded any value for PM2.5.

Definition 14.1 Let {1, 2, · · · , h}. be the set of fuzzy terms for a membership

function µ.. The set of linguistic variables that can be drawn from the membership

function µ. for an item i ., denoted as Ri = {Ri1, Ri2, · · · , Rih}., where Rik, 1 ≤ k ≤

h., is the fuzzy term mapped to an item i ..

Example 14.2 The set of fuzzy terms for the utility database shown in

Table 14.1 are G, M, UH4SG, UH, VUH, and H (see Fig. 14.1a). Conse-

quently, the set of fuzzy terms for an item a . in Table 14.1, i.e., Ra =

{a.G, a.M, a.UH4SG, a.UH, a.V UH, a.H }.. The same can be stated for

the remaining items in the table.

Definition 14.2 Let viq . denote the quantitative value of an item i . in the transaction

Tq .. The fuzzy set, denoted as fiq ., is the set of fuzzy terms with their membership

Table 14.1 Running example: utility database

t id itemset tid itemset

1 a : 60, b : 65, d : 55. 7 a : 45, b : 60, c : 45, e : 25.

2 a : 30, b : 70, e : 60. 8 a : 55, d : 60.

3 a : 55, c : 20. 9 a : 60, b : 65, d : 30.

4 a : 60, b : 65, d : 55. 10 a : 45, d : 40, f : 40.

5 a : 55, d : 60, f : 30. 11 a : 60, b : 55, c : 65, d : 55.

6 b : 55, c : 40, e : 45. 12 b : 45, e : 65.

1 PM2.5 represents the particulate matter that has a diameter of 2.5 micrometers or smaller.

14.3 Practical Representation 137

Fig. 14.1 Graphical representation of fuzzy membership function for PM2.5 .

degrees (fuzzy values) transformed from the quantitative value viq . of the linguistic

variable i . by the membership functions µ. as

. fiq = µi(viq)

=
f viq1

Ri1
+

f viq2

Ri2
+ · · · +

f viqh

Rih

, (14.1)

where h. is the number of fuzzy terms of i . transformed by µ., Ril . is the l .th fuzzy

term of i ., f viql . is the membership degree (fuzzy value) of viq . of i . in the l .th fuzzy

term Ril ., and f viql ∈ [0, 1]..

Example 14.3 Consider the item a . in Table 14.1. The quantity of a . in the first

transaction is 60. Thus, va1 = 60.. Based on the membership function shown in

Fig. 14.1, the fuzzy set of a . in T1 ., i.e.,

. fa1 =
0

a.G
+

0

a.M
+

0

a.UH4SG
+

0.5

a.UH
+

0.5

a.V UH
+

0

a.H
=

0.5

a.UH
+

0.5

a.V UH
.

For simplicity, we represent fa1 = {a.UH : 0.5, a.V UH : 0.5}.. The fuzzy

transactional database [1, 2] generated from Table 14.1 is shown in Table 14.2.

14.3 Practical Representation

A fuzzy transactional database is typically stored as a file on a computer. To ensure

consistency and readability, follow these guidelines when creating and managing

the file:

• Enter Transaction in Line: Each transaction is written as a line.

• Appearance of Fuzzy Terms: Fuzzy terms appear at the beginning of the line.

A delimiter, say tab space, separates the fuzzy terms.

138 14 Pattern Discovery in Fuzzy Databases

Table 14.2 Fuzzy temporal database generated from Table 14.1

t id itemset

1 a.UH : 0.5, a.V UH : 0.5, b.UH : 0.25, b.V UH : 0.75, d.UH : 0.75, d.V UH : 0.25.

2 a.M : 0.25, a.UH4G : 0.75, b.V UH : 1, e.UH : 0.5, e.V UH : 0.5.

3 a.UH : 0.75, a.V UH : 0.25, c.M : 0.75, c.UH4G : 0.25.

4 a.UH : 0.5, a.V UH : 0.5, b.UH : 0.25, b.V UH : 0.75, d.UH : 0.75, d.V UH : 0.25.

5 a.UH : 0.75, a.V UH : 0.25, d.UH : 0.5, d.V UH : 0.5, f.M : 0.5, f.UH4G : 0.5.

6 b.UH : 0.75, b.V UH : 0.25, c.UH4G : 0.66, c.UH : 0.33, e.UH4G : 0.33, e.UH : 0.66.

7 a.UH4G : 0.33, a.UH : 0.66, b.UH : 0.5, b.V UH : 0.5, c.UH4G : 0.33, c.UH : 66,.

e.M : 0.5, e.UH4G : 0.5.

8 a.UH : 0.75, a.V UH : 0.25, d.UH : 0.5, d.V UH : 0.5.

9 a.UH : 0.5, a.V UH : 0.5, b.UH : 0.25, b.V UH : 0.75, d.M :, d.UH4G :.

10 a.UH4G : 0.33, a.UH : 0.66, d.UH4G : 0.66, d.UH : 0.33, f.UH4G : 0.66,.

f.UH : 0.33.

11 a.UH : 0.5, a.V UH : 0.5, b.UH : 0.75, b.V UH : 0.25, c.UH : 0.25, c.V UH : 0.75,.

d.UH : 0.75, d.V UH : 0.25.

12 b.UH4G : 0.33, b.UH : 0.66, e.UH4G : 0.33, e.UH : 0.66.

• Appearance of Fuzzy Values: Fuzzy values appear after the fuzzy terms. A

delimiter, say tab space, separates the fuzzy value. The delimiter for fuzzy terms

and fuzzy values must remain the same.

• Delimiter for Fuzzy Terms and Fuzzy Values: The fuzzy terms and fuzzy

values in a transaction are separated with a colon mark (:) as a delimiter. This

delimiter is fixed and cannot be overwritten by the users.

• Neglecting TID Information: Since each row represents the t id information of

a transaction, we do have to store the t id information in t he file.

Thus, the format of a sequence in this representation is

. f uzzT erm1f uzzT erm2 · · · f uzzT ermn : f uzzV al1f uzzV al2 · · · f uzzV aln.

Example 14.4 An example of the first transaction appearing in the fuzzy transac-

tional database shown in Table 14.2 is a.UH a.VUH b.UH b.VUH d.UH d.VUH:0.5

0.5 0.25 0.75 0.75 0.25.

14.4 Fuzzy Frequent Patterns

14.4.1 Basic Model

Definition 14.3 (The Support of a Fuzzy Term) Let FT D′
. denote the fuzzy

transactional database generated from the UD using the fuzzy membership function

14.4 Fuzzy Frequent Patterns 139

µ.. The support of the transformed fuzzy terms, denoted sup(Ril)., is the summation

of scalar cardinality of the fuzzy values of fuzzy term Ril ., which can be defined as

.sup(Ril) =
∑

Ril⊆Tq∧Tq∈FT D′

f vilq . (14.2)

Example 14.5 Table 14.2 shows the fuzzy transactional database generated for

the utility database shown in Table 14.1. The item d.UH . appears in the trans-

actions whose timestamps are 1, 4, 5, 8, 10., and 11. Thus, the support of item

d.UH ., i.e., sup(Rd.UH .)= f vd.UH1
+ f vd.UH4

+ f vd.UH5
+ f vd.UH8

+ f vd.UH10
+

f vd.UH11
.=0.75 + 0.75 + 0.5 + 0.5 + 0.33 + 0.75.=3.58..

Definition 14.4 (The Support of a Fuzzy k-Pattern) The support of fuzzy k-

pattern (k ≥ 2)., denoted as sup(X)., is the summation of scalar cardinality of the

fuzzy values for X, which can be defined as

.sup(X) = {X ∈ Ril |
∑

Ril⊆Tq∧Tq∈FT D′

min(f vaql, f vbql), (14.3)

where a, b ∈ X . and a �= b..

Example 14.6 The set of fuzzy terms, {a.UH, d.UH }., is an itemset (or a pattern).

This pattern contains two items. Therefore, it is a 2-pattern. In Table 14.2, the

pattern {a.UH, d.UH }. occurs in the transactions whose transactional identifiers

are 1, 4, 5, 8, 10., and 11. Thus, the support of {a.UH, d.UH }. in Table 14.2,

i.e., sup(a.UH, d.UH .)= min(f va.UH1
, f vd.UH1

) + min(f va.UH4
, f vd.UH4

) +

min(f va.UH5
, f vd.UH5

)+min(f va.UH8
, f vd.UH8

)+min(f va.UH10
, f vd.UH10

)+

min(f va.UH11
, f vd.UH11

) = min(0.5, 0.75) + min(0.75, 0.5) + min(0.75, 0.5) +

min(0.75, 0.5) + min(0.66, 0.33) + min(0.5, 0.75) = 0.5 + 0.5 + 0.5 + 0.5 +

0.33 + 0.5 = 2.83..

Definition 14.5 (Fuzzy Frequent Pattern X) A pattern X is called a fuzzy

frequent pattern if its support is no less than the user-specified minimum support

(minSup). In other words, X is a fuzzy frequent pattern if sup(X) ≥ minSup ..

Example 14.7 If the user-specified minSup = 2., then the fuzzy pattern

{a.UH, d.UH }. is said to be a fuzzy frequent pattern because sup({a.UH, d.UH }) ≥

minSup .. The above pattern provides useful information that the sensors a and d

have frequently observed unhealthy levels of PM2.5 ..

Definition 14.6 (Problem Definition) Given the quantitative transactional (or util-

ity) database (UD), the user-specified fuzzy membership functions (µ.), and min-

imum support (minSup) value, the problem of fuzzy frequent pattern mining

involves discovering all patterns in FT D′
. that have sup(X) ≥ minSup ..

140 14 Pattern Discovery in Fuzzy Databases

14.4.2 Mining Algorithm

Several algorithms have been developed to identify fuzzy frequent patterns in fuzzy

transactional database. The PAMI library implements the FFI-Miner [2] algorithm.

The following code demonstrates using FFI-Miner to discover fuzzy frequent

patterns.

Program 1: Fuzzy Frequent Patterns in Fuzzy Transactional Database

from PAMI.fuzzyFrequentPattern.basic \

import FFIMiner as alg

inputFile = 'Fuzzy_T10I4D100K.csv'

minimumSupportCount = 100

obj = alg.FFIMiner(iFile=inputFile, \

minSup=minimumSupportCount, sep='\t')

obj.mine()

Retrieve discovered patterns and resource usage

obj.save('fuzzyfrequentPatterns.txt')

Patterns = obj.getPatterns()

print("Total number of Fuzzy Frequent Patterns:",len(Patterns))

Display memory and runtime statistics

memUSS = obj.getMemoryUSS()

print("Total Memory in USS:", memUSS)

memRSS = obj.getMemoryRSS()

print("Total Memory in RSS:", memRSS)

runTime = obj.getRuntime()

print("Total Execution Time in ms:", runTime)

In this example, the FFI-Miner algorithm is initialized with an input file

containing fuzzy transactional database (Fuzzy_T10I4D100K.csv), a minimum

support threshold (minSup=100), and a specified delimiter. The algorithm then

mines for fuzzy frequent patterns, which are stored in Patterns. Memory usage

and runtime statistics are also displayed, providing insights into the algorithm’s

resource requirements.

References 141

14.5 Other Types of Fuzzy Databases

This chapter primarily covered fuzzy transactional databases and how to mine them.

However, other forms of fuzzy databases exist in the real world. For example, adding

the timestamp information to a fuzzy transactional database will result in a fuzzy

temporal database. Similarly, considering the spatial information of the items in the

fuzzy transactional (or temporal) database will result in a fuzzy spatio-transactional

(or spatiotemporal) database. Users can find interesting patterns, such as fuzzy

periodic-frequent patterns, fuzzy geo-referenced frequent patterns, and fuzzy geo-

referenced periodic-frequent patterns from these databases.

14.6 Conclusion

This chapter presented fuzzy databases as a method for managing and analyzing

data with inherent uncertainty, offering an alternative to traditional transactional

databases. Using fuzzy membership functions, we can transform utility databases

into fuzzy transactional databases, allowing data to be represented in degrees rather

than absolute values. This chapter covered the theoretical and practical frameworks

for fuzzy databases, including the representation of fuzzy data and techniques

for mining fuzzy frequent patterns. The implementation code accompanying the

examples in this chapter can be accessed on our GitHub repository: https://github.

com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb.

References

1. C. Lin, T. Hong and W. Lu. Linguistic data mining with fuzzy FP-trees. In Expert Systems with

Applications, pp. 4560–4567, 2010.

2. C.-W. Lin, T. Li, P. Fournier Viger and T.-P. Hong. A fast algorithm for mining fuzzy frequent

itemsets. Journal of Intelligent and Fuzzy Systems, vol. 29, no. 6, pp. 2373–2379, 2015.

https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb

Chapter 15

Knowledge Discovery in Uncertain
Databases

Abstract This chapter focuses on uncertain transactional databases (UTDB),

which represent collections of transactions containing items with associated proba-

bilities, reflecting the inherent uncertainty in real-world data. We formally define

uncertain transactions, patterns, and their expected support in the context of

uncertain data. The chapter also covers techniques for creating synthetic uncertain

transactional databases, converting structured data into UTDBs, and deriving statis-

tical details to understand the data’s characteristics better. A significant portion of

the chapter is dedicated to the challenges of frequent pattern discovery, specifically

addressing the limitations of the downward closure property in uncertain data and

introducing algorithms like TUBE-P for efficient pattern mining. Practical Python

code examples demonstrate how these methods can be implemented to analyze

uncertain transactional data.

15.1 Introduction

An uncertain transactional database is a collection of unordered transactions,

where each transaction consists of items along with their associated occurrence

probabilities. This type of data is commonly found in real-world scenarios such

as sales, healthcare, clickstream analysis, and sensor networks, where uncertainty

about the presence of items in a transaction is inherent. The diagram in Fig. 15.1

illustrates how various factors combine to form an uncertain transactional database,

emphasizing the complex relationships involved.

Other types of uncertain transactional databases exist, such as uncertain temporal

databases, uncertain geo-referenced transactional databases, and uncertain utility

databases, each incorporating different factors. This chapter focuses on introducing

uncertain transactional databases and exploring methods for discovering interesting

patterns within them, considering the inherent uncertainty in the data.

This chapter addresses the following key aspects of uncertain transactional

databases:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_15

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 15&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_15
https://doi.org/10.1007/978-981-96-6791-8_15
https://doi.org/10.1007/978-981-96-6791-8_15
https://doi.org/10.1007/978-981-96-6791-8_15
https://doi.org/10.1007/978-981-96-6791-8_15
https://doi.org/10.1007/978-981-96-6791-8_15
https://doi.org/10.1007/978-981-96-6791-8_15
https://doi.org/10.1007/978-981-96-6791-8_15
https://doi.org/10.1007/978-981-96-6791-8_15
https://doi.org/10.1007/978-981-96-6791-8_15
https://doi.org/10.1007/978-981-96-6791-8_15

144 15 Knowledge Discovery in Uncertain Databases

Fig. 15.1 Illustration of factors contributing to the creation of an uncertain transactional database

1. Theoretical Representation: The formal definition of an uncertain transactional

database using set theory.

2. Practical Representation: Implementing and storing uncertain transactional

databases within computer systems.

3. Synthetic Database Creation: Methods for generating synthetic uncertain

transactional databases used for testing and benchmarking.

4. Dataframe Conversion: Techniques for transforming structured dataframes into

uncertain transactional databases, enabling broader data analysis applications.

5. Database Statistics: Approaches for deriving statistical insights from an uncer-

tain transactional database.

6. Finding Frequent Patterns: A formal definition of frequent patterns and a

detailed procedure for discovering them in uncertain transactional databases.

15.2 Theoretical Representation

Let I = {i1, i2, . . . , in}., where n ≥ 1., be a set of items. Let X ⊆ I . represent an

itemset (or a pattern). A pattern that contains k . items is called a k .-pattern.

An uncertain transaction, denoted tt id ., consists of a transaction identifier (t id .)

and a pattern Y .. That is, tt id = (tid, Y)., where Y ⊆ I . is the set of items in the

pattern. Importantly, each item ik ∈ Y . is associated with an existential probability

P(ik, tt id) ∈ (0, 1)., which represents the likelihood of the presence of item ik . in the

uncertain transaction tt id ..

An uncertain transactional database [1], denoted UT DB ., is a collection of such

uncertain transactions:

. UT DB = {t1, t2, . . . , tm}, m ≥ 1.

Each transaction in the database is associated with a transaction identifier, the

corresponding pattern, and the probabilities for each item in the pattern. This

structure allows for the representation of uncertainty regarding the presence of items

in each transaction.

15.3 Practical Representation 145

Table 15.1 Uncertain

transactional database
tid Transaction

1 b(0.1) c(0.8) d(0.9)

2 a(0.7) c(0.7) d(0.1)

3 a(0.8) b(0.6) c(0.4)

4 c(0.3) d(0.4) e(0.9)

Example 15.1 Let I = {a, b, c, d, e}. be a set of fixed sensors (or items). A

hypothetical uncertain transactional database constituting these items is shown in

Table 15.1. The set of items a . and c., i.e., {a, c}. (or ac., in short) is a pattern. This is

a 2-pattern as it contains only two items.

15.3 Practical Representation

An uncertain transactional database is usually stored as a file on a computer. To

properly create and manage this file, follow these four rules:

• One Transaction per Line: Each line in the file represents a single transaction.

The line number implicitly acts as the transaction identifier (tid), so it is not

explicitly stored in the file to save space and reduce processing costs.

• Order of Occurrences: All items occur first in a transaction. Next, the uncer-

tainty values appear in the same order as the items have occurred. Items and their

uncertainty values are separated with a fixed delimiter, a colon mark.

• Unique Items per Transaction: Each item should appear once per line. The

items can be listed in any order within the line.

• A Delimiter Separates Items and Uncertain Values: Items and their uncertain

values in a transaction are separated by a delimiter, such as a space or tab. The

PAMI algorithms use a tab as the default delimiter, but users can choose other

delimiters like commas or s paces.

Overall, the format of a transaction in an uncertain transactional database is

. item1〈sep〉item2〈sep〉 · · · : value1〈sep〉value2〈sep〉 · · ·

Example 15.2 If the delimiters are a tab and a colon mark, the uncertain transac-

tional database shown in Table 15.1 would look like this:

b c d:0.1 0.8 0.9

a c d:0.7 0.7 0.1

a b c:0.8 0.6 0.4

c d e:0.3 0.4 0.9

146 15 Knowledge Discovery in Uncertain Databases

15.4 Creating Synthetic Uncertain Transactional Database

The PAMI package offers a powerful and flexible tool for generating uncertain

synthetic transactional databases tailored to various needs. This capability is

invaluable for testing and developing algorithms in data mining and related fields.

Users can customize the database to suit their specific requirements, including the

number of transactions, the total number of items, and the average transaction

length.

To illustrate the creation of an uncertain synthetic transactional database, con-

sider the following sample code. This example generates a database with 100,000

transactions, each containing an average of 10 items from a set of 1,000 possible

items:

Program 1: Generating Synthetic Uncertain Transactional Database

from PAMI.extras.syntheticDataGenerator \

import UncertainTransactionalDatabase as db

obj = db.UncertainTransactionalDatabase(

databaseSize=100000,

avgItemsPerTransaction=10,

numItems=1000,

sep='\t'

)

obj.create()

obj.save('uncertainTDB.csv')

#read the generated transactions into a dataframe

transactionalDataFrame=obj.getTransactions()

#stats

print('Runtime: ' + str(obj.getRuntime()))

print('Memory (RSS): ' + str(obj.getMemoryRSS()))

print('Memory (USS): ' + str(obj. getMemoryUSS()))

15.5 Converting a Dataframe into an Uncertain

Transactional Database

The PAMI package provides a convenient method to convert a dataframe into

an uncertain transactional database, particularly useful for transaction-based data

analysis. The following Python code demonstrates how to perform this conversion:

15.6 Obtaining Statistical Details 147

Program 2: Dataframe to Uncertain Transactional Database Conversion

from PAMI.extras.convert import DF2DB as alg

import pandas as pd

import numpy as np

Creating a 100 x 4 DataFrame with random values

data = np.random.uniform(0, 1, size=(100, 4))

dataFrame = pd.DataFrame(data,

columns=['Item1', 'Item2', 'Item3', 'Item4']

)

Converting the DataFrame to an uncertain transactional database

by considering values greater than or equal to a threshold (0.6)

obj = alg .DF2DB(dataFrame)

obj.convert2UncertainTransactionalDatabase(

oFile='UTDB.csv',

condition='>=', thresholdValue=0.6

)

Printing runtime and memory usage statistics

print('Runtime: ' + str(obj.getRuntime()))

print('Memory (RSS): ' + str(obj.getMemoryRSS()))

print('Memory (USS): ' + str(obj.getMemoryUSS()))

15.6 Obtaining Statistical Details

The dbStats sub-package in PAMI’s extras module allows users to retrieve

statistical details about an uncertain transactional database. These statistics are

important for understanding the underlying properties of the database, which can

inform various data analysis tasks. The statistical details provided by dbStats

include:

1. Database size

2. Total number of items in the database

3. Minimum, average, and maximum lengths of the transactions

4. Standard deviation of transaction sizes

5. Variance in transaction sizes

6. Sparsity of the database

148 15 Knowledge Discovery in Uncertain Databases

7. Frequencies of the items in the database

8. Distribution of transaction lengths

Below is an example demonstrating how to use dbStats to derive these statistics

from an uncertain transactional database:

Program 3: Deriving the Statistical Details

from PAMI.extras.dbStats import \

UncertainTransactionalDatabase as stat

Load the uncertain transactional database

obj = stat.UncertainTransactionalDatabase("UTDB.csv")

Run the statistics generation

obj .run()

Print the calculated statistics

obj.printStats()

Plot graphical representations of the statistics

obj.plotGraphs()

15.7 Frequent Pattern Discovery

15.7.1 Basic Model

Definition 15.1 (Expected Support of Pattern X in a Transaction) The exis-

tential probability of X in tt id ., denoted as P(X, tt id)., represents the product of

corresponding existential probability values of all items in X when these items are

independent. That is,

. P(X, tt id) =
∏

∀ij ∈X

P(ij , tt id).

The expected support of X in the uncertain transactional database UT DB, denoted

as expSup(X)., is given by

15.7 Frequent Pattern Discovery 149

. expSup(X) =

m∑

t id=1

P(X, tt id),

where m is the total number of transactions in the database.

Example 15.3 Consider the pattern ac, which occurs in transactions with t ids of 2

and 3. The existential probability of ac in the second transaction is

. P(ac, t2) = P(a, t2) × P(c, t2) = 0.7 × 0.7 = 0.49.

Similarly, the existential probability of ac in the third transaction i s

. P(ac, t3) = 0.32.

The expected support of ac in the entire database i s

. expSup(ac) = 0.49 + 0.32 = 0.81.

Definition 15.2 (Frequent Pattern X) A pattern X is considered frequent if its

expected support satisfies the condition:

. expSup(X) ≥ minSup,

where minSup represents the user-specified minimum support t hreshold.

Example 15.4 Suppose the user specifies a minimum support value of minSup =

0.6.. In that case, the pattern ac is considered frequent since its expected support,

expSup(ac) = 0.81., is greater than or equal to the minimum support threshold.

15.7.2 Search Space

The set of items in a database forms an itemset lattice. This lattice represents the

search space for pattern discovery in certain and uncertain transactional data. The

search space size is 2n − 1., where n represents the total number of items in the

database.

15.7.3 Inability of Apriori Property

Although the search space for frequent pattern discovery is the same for certain and

uncertain data, the computational cost for finding these patterns differs. The reason

is as follows:

150 15 Knowledge Discovery in Uncertain Databases

The frequent patterns discovered from certain data satisfy the downward closure

property. This property plays a key role in reducing the computational costs of

finding frequent patterns in certain data. However, the frequent patterns discovered

from uncertain data do not satisfy the downward closure property. This increases the

search space, leading to a higher computational cost in finding frequent patterns in

uncertain data. To address this challenge, mining algorithms employ various upper-

bound constraints to help find frequent patterns in uncertain data.

15.7.4 Finding Frequent Patterns

Several algorithms, such as PUF [2], TUBE-P [3], and TUBE-S [3], have been

proposed in the literature to find frequent patterns in uncertain transactional

databases. While there is no universally accepted best algorithm, TUBE-P is widely

used for its relatively faster performance than other algorithms. Below is a sample

Python script demonstrating how to use the TUBE-P algorithm from the PAMI

package to discover frequent patterns in an uncertain transactional database.

Program 1: Frequent Pattern Discovery Using TUBE-P

from PAMI.uncertainFrequentPattern.basic \

import TubeP as alg

Input file and minimum support count for frequent pattern mining

inputFile = 'uncertainTransaction_T10I4D100K.csv'

minSupport = 300

Create an instance of the TubeP algorithm

obj = alg.TubeP(iFile=inputFile,

minSup=minSupport, sep='\t')

Mine frequent patterns

obj.mine()

Save the discovered frequent patterns to a file

obj.save('frequentPatterns.txt')

Convert the frequent patterns into a DataFrame

frequentPatternsDF = obj.getPatternsAsDataFrame()

Display the number of frequent patterns and resource usage

print('#Patterns: ' + str(len(frequentPatternsDF)))

print('Runtime: ' + str(obj.getRuntime()))

References 151

print('Memory (RSS): ' + str(obj.getMemoryRSS()))

print('Memory (USS): ' + str(obj. getMemoryUSS()))

15.8 Conclusion

In this chapter, we explored the concept of uncertain transactional databases,

highlighting their structure, the challenges in handling uncertainty, and the methods

to mine frequent patterns from such data. We introduced the formalization of uncer-

tain transactions and patterns, the process of generating synthetic uncertain data,

and the conversion of structured dataframes into transactional databases. We also

discussed the key statistical measures necessary for understanding the properties

of uncertain transactional data. Given the complexity of uncertain data, we outlined

the limitations posed by the inability to apply the downward closure property, which

increases computational costs. We highlighted algorithms like TUBE-P that utilize

upper-bound constraints to discover frequent patterns effectively. We demonstrated

how to apply these techniques to real-world scenarios by providing practical Python

code examples. In conclusion, while uncertain transactional data presents unique

challenges, the methods and tools discussed offer valuable solutions for efficient

analysis and pattern discovery, with future potential for optimization and application

across various domains.

References

1. Chui, C. K., Kao, B., and Hung, E. (2007). Mining frequent itemsets from uncertain data. In:

PAKDD, pp. 47–58 (2007).

2. Leung, C.K.S., Tanbeer, S.K.: PUF-Tree: a compact tree structure for frequent pattern mining

of uncertain data. In: PAKDD, pp. 13–25 (2013).

3. Leung, C.K., MacKinnon, R.K., Tanbeer, S.K.: Fast algorithms for frequent itemset mining

from uncertain data. In: ICDM, pp. 893–898 (2014).

Chapter 16

Finding Useful Patterns in Graph
Databases

Abstract Graph transactional databases are essential for modeling complex rela-

tionships in various real-world applications, such as social networks, bioinformatics,

and cheminformatics. These databases can be categorized as either certain or uncer-

tain, depending on whether their edge connections are deterministic or probabilistic.

This chapter provides a comprehensive exploration of graph transactional databases,

covering both theoretical and practical representations. It introduces formal def-

initions of graph structures using set theory, details various data storage formats

(traditional and compressed), and explains procedures for converting between these

formats. Additionally, it presents methodologies for generating synthetic graph

databases and deriving statistical insights. Furthermore, the chapter discusses fre-

quent subgraph pattern discovery, a crucial task for uncovering recurring structures

within graph data. The use of the PAMI package is highlighted throughout, offering

practical implementations for database creation, visualization, and analysis.

16.1 Introduction

Graph data structures are versatile tools for representing relationships in real-

world data applications. They are instrumental in scenarios where entities and their

interactions are at the forefront, such as in social networks, chemical compounds,

or protein interactions.

A graph database is a collection of graphs, enabling structured analysis and

querying of the represented relationships. Graph databases are typically categorized

into two types based on the certainty of their edge connections:

• Graph Certain Binary Transactional Database (or Graph Transactional

Database) [1]: In this type of database, the relationships (edges) between nodes

are deterministic. Specifically, the probability of an edge existing between any

two nodes is either 0 or 1. This deterministic nature ensures that all connections

are either confirmed (present) or absent, with no ambiguity.

• Graph Uncertain Binary Transactional Database (or Uncertain Graph

Transactional Database) [2]: Unlike their certain counterparts, uncertain graph

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

U. K. Rage, Hands-on Pattern Mining,

https://doi.org/10.1007/978-981-96-6791-8_16

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 16&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_16
https://doi.org/10.1007/978-981-96-6791-8_16
https://doi.org/10.1007/978-981-96-6791-8_16
https://doi.org/10.1007/978-981-96-6791-8_16
https://doi.org/10.1007/978-981-96-6791-8_16
https://doi.org/10.1007/978-981-96-6791-8_16
https://doi.org/10.1007/978-981-96-6791-8_16
https://doi.org/10.1007/978-981-96-6791-8_16
https://doi.org/10.1007/978-981-96-6791-8_16
https://doi.org/10.1007/978-981-96-6791-8_16
https://doi.org/10.1007/978-981-96-6791-8_16

154 16 Finding Useful Patterns in Graph Databases

Fig. 16.1 Factors contributing to the creation of certain graph transactional database

Fig. 16.2 Factors contributing to the creation of uncertain graph transactional database

transactional databases accommodate uncertainty in relationships. Here, the

probability of an edge existing between two nodes lies in the range (0, 1). This

probabilistic approach reflects situations where connections are not definitive but

are associated with some degree of likelihood.

Figures 16.1 and 16.2 visually highlight how various factors influence the formation

of these graph databases, illustrating the distinct characteristics of certainty and

uncertainty within these data structures.

This chapter delves into graph transactional databases, focusing on their proper-

ties, representations, and methodologies for uncovering interesting patterns within

them. The key topics covered in this chapter include:

1. Theoretical Representation: A rigorous formalization of graph databases using

set theory, providing a foundation for understanding their structure and compo-

nents.

2. Practical Representation: Details on how graph databases are stored and

implemented in computer systems, emphasizing practical aspects of data rep-

resentation and retrieval.

3. Synthetic Graph Database Creation: Techniques for generating synthetic

graph databases, essential for testing algorithms, benchmarking methods, and

evaluating performance in controlled environments.

4. Graph Statistics: How to derive statistical details about a graph database.

5. Finding Frequent Subgraph Patterns: Formal definitions and algorithms for

identifying frequent subgraphs, which are graph patterns appearing recurrently

across multiple graphs in the database.

6. Finding Top-k Subgraph Patterns: A formal framework and procedures for

discovering the top-k subgraph patterns, focusing on ranking and retrieving the

most significant patterns based on predefined criteria.

16.2 Theoretical Representation 155

16.2 Theoretical Representation

Definition 16.1 (A Graph) An exact graph is formally defined as

. G = (V ,E,Lv, Le, Fv, Fe),

where:

• V is the set of vertices (nodes).

• E is the set of edges (connections between nodes).

• Lv . is the set of labels for vertices.

• Le . is the set of labels for edges.

• Fv : V → Lv . maps each vertex to its corresponding label.

• Fe : E → Le . maps each edge to its corresponding label.

Example 16.1 Let:

• Lv = {A, B, C, D }.: the set of vertex labels

• Le = {1, 2, 3 }.: the set of edge labels

• V = {0, 1, 2, 3 }.: the identifiers of four vertices

• E = {edge(0, 1), edge(0, 2), edge(2, 3), edge(3, 1) }.: the set of edges connecting

pairs of vertices

The Graph 1 in Fig. 16.3 represents an exact graph generated using Lv ., Le ., V , and

E .

Definition 16.2 (Graph Transactional Database) A graph transactional

database is a collection of labeled exact graphs. It is denoted as

. GT D = {G1,G2, . . . ,Gn},

where n is the number of graphs in the database, and each Gi . is an exact graph.

Example 16.2 The collection of all four graphs illustrated in Fig. 16.3 constitutes

a graph transactional database.

Graph 1

A B

C D

1

2

2

1

Graph 2

A B

C D

1

23

Graph 3

A B

C

2

12

Graph 4

A B

C

D

1

1

1

Fig. 16.3 An example of graph transactional database

156 16 Finding Useful Patterns in Graph Databases

16.3 Practical Representation

A graph transactional database is typically stored as a file on a computer. This

database can be stored in two primary formats: the traditional format and the

compressed format.

The traditional format is the most commonly used representation for storing

graph databases. In this format, every graph’s identifier, nodes, and edges are written

on separate lines. However, the main limitation of this format is data redundancy,

which can increase the memory and runtime requirements of mining algorithms.

The compressed format, introduced by PAMI researchers, represents each graph

in a single line, listing nodes first, followed by edges and their labels. Algorithms in

PAMI are designed to accept graph databases in both formats.

This subsection describes both formats and explains the procedures for convert-

ing between traditional and compressed formats.

16.3.1 Traditional Format

To prepare a graph transactional database in the traditional format, follow these

rules:

• Beginning a graph: Start each graph with a triplet “t # id” on a line, where

id ∈ (1, n). is an integer representing the graph identifier.

• Storing a vertex: A vertex in a graph is written as a triplet “v vertexID

vertexLabel” on a line. The vertexID must be unique within each graph. The

vertexLabel can appear multiple times in a graph, as multiple vertices can have

the same label.

• Storing the edges: An edge in a graph is written as “e vertexID_from

vertexID_to edgeLabel” on a line. The vertexID_from and vertexID_to

indicate the ve rtices connected by the edge.

The overall structure of the traditional format is as follows:

t # graphID

v vertexID_1 vertexLabel

...

e vertexID_1 vertexID_2 edgeLabel

...

Example 16.3 The Graphs 1 and 2 from Fig. 16.3 can be represented in the

traditional format as follows:

t # 0

v 0 A

v 1 B

v 2 C

16.3 Practical Representation 157

v 3 D

e 0 1 1

e 1 3 2

e 3 2 2

e 2 0 1

t # 1

v 0 A

v 1 B

v 2 C

v 3 D

e 0 1 1

e 0 2 3

e 1 3 2

16.3.2 Compressed Format

To prepare a graph transactional database in a compressed format, follow these

rules:

• Each line represents a graph: The information in a graph is stored in a single

line.

• Order of storing vertices and edges: The vertices first appear in a line, followed

by the edges. A fixed delimiter, a colon mark, separates the vertices and edges.

• Vertex pairs: In a line, each vertex is represented as a pair containing vertex

identifier (vID) and vertex label (vL).

• Edge triplets: In a line, each edge is represented as a triplet containing vertex

identifier, vertex identifier, and edge label (eL).

Overall, the compressed format of representing a graph transactional database is

vID_1 vL_1 vID_2 vL_2...:vID_1 vID_2 eLB_1 vID_1 vID_4 eL_2...

Example 16.4 The Graphs 1 and 2 in Fig. 16.3 are written as follows:

0 A 1 B 2 C 3 D :0 1 1 1 3 2 3 2 2 2 0 1

0 A 1 B 2 C 3 D:0 1 1 0 2 3 1 3 2

16.3.3 Procedures for Converting Traditional into Compressed

Format

The PAMI library provides functionality to transform a graph transactional database

from a traditional format into a compressed format and vice versa.

158 16 Finding Useful Patterns in Graph Databases

Program 1: Converting the Format

1 from PAMI.extras.graph \

2 import GraphConvertor as gc

3

4 obj = gc.GraphConvertor(iFile='Chemical_340.txt')

5 obj.convertTraditional2Compressed()

6 #obj.convertFromCompressed2Traditional()

7 obj.save('compressedGraphData.csv')

8

9 # Stats

10 print('Runtime: ' + str(obj.getRuntime()))

11 print('Memory (RSS): ' + str(obj.getMemoryRSS()))

12 print('Memory (USS): ' + str(obj.getMemoryUSS()))

16.4 Creating Synthetic Graph Transactional Database

The PAMI package provides a flexible and efficient tool for generating graph

transactional databases, which can be customized to meet specific needs. This

feature is handy for testing and developing algorithms in data mining and related

fields.

To demonstrate how to create a synthetic graph transactional database, the

following sample code can be used:

Program 2: Generating Synthetic Graph Transactional Database

1 from PAMI.extras.syntheticDataGenerator import

certainGraphTransactions as db→֒

2

3 obj = db.certainGraphTransactions(numGraphs=100,

avgNumVertices=10, avgNumEdges=6, numVertexLabels=5,

numEdgeLabels=3, outputFileName='opn.txt', format='old')

→֒

→֒

4 obj.generate()

5 #stats

6 print('Runtime: ' + str(obj.getRuntime()))

7 print(' Memory (RSS): ' + str(obj.getMemoryRSS()))

8 print('Memory (USS): ' + str(obj. getMemoryUSS()))

16.6 Obtaining Statistical Details 159

16.5 Visualizing the Graph Database

The PAMI package allows users to view graphs in a graph database. Below is a

sample Python code for this purpose.

Program 3: Visualizing the Graph Database

1 from PAMI.extras.visualize import graphs as vis

2 objVis = vis.graphDatabase(iFile=' graphTransactionalDB.csv')

3 objVis.plot()

16.6 Obtaining Statistical Details

The stats sub-package in PAMI’s extras module allows users to retrieve statisti-

cal details about a graph database. These statistics are important for understanding

the underlying properties of the database, which can inform various data analysis

tasks. The statistical details provided by stats include:

1. Average number of nodes

2. Average number of edges

3. Minimum, average, and maximum number of nodes

4. Minimum, average, and maximum number of edges

5. Total number of unique vertex labels

6. Total number of unique edge labels

Below is an example demonstrating how to use stats to derive these statistics

from an uncertain transactional database:

Program 4: Deriving the Statistical Details

1 from PAMI.extras.stats import graphDatabase as alg

2

3 # Load the uncertain transactional database

4 obj = alg.graphDatabase(iFile='Chemical_340.txt')

5

6 # Print the calculated statistics

7 obj.printGraphDatabaseStatistics()

8 obj.printIndividualGraphStats()

9

160 16 Finding Useful Patterns in Graph Databases

10 # Plot graphical representations of the statistics

11 obj .plotEdgeDistribution()

12 obj. plotNodeDistribution()

16.7 Frequent Subgraph Pattern Discovery

16.7.1 Basic Model

Definition 16.3 (A Subgraph) A subgraph, S in an exact graph, G =

(V ,E,Lv, Le, Fv, Fe). is defined as S = (Vs, Es, Lsv, Lse, Fsv, Fse)., such that

S ⊑ G., iff Vs ⊆ V . and Es ⊆ E .. A subgraph is a part of the graph.

Example 16.5 An example of a subgraph, S, is

t # 0

v 0 A

v 1 B

e 0 1 1

Definition 16.4 (Support of Subgraph Pattern) Support, sup, of a subgraph

pattern S in a graph transactional dataset D, is defined as

. sup(S) =
|{g | g ∈ D ∧ S ⊑ g}|

|GT D|
.

It means that the subgraph, S, is isomorphic to some pattern that is a subset of graph

g, for all such graphs which belong to GT D. It is finally normalized by dividing by

GT D and keeping its range between 0 and 1.

Example 16.6 Continuing the above example, the subgraph S appears in three

graphs (i.e., Graph 1 (G1 .), Graph 2 (G2 .), and Graph 4 (G4 .)) of the graph

transactional database shown in Fig. 16.3. Thus, the support of S, i.e., sup(S) =

|{G1,G2,G4}|/|GT D| = 3/4 = 0.75..

Definition 16.5 (Frequent Subgraph Pattern X) A subgraph pattern S is con-

sidered frequent if its support is no less than the user-specified minimum support

(minSup) threshold v alue.

Example 16.7 If the user-specified minSup = 0.5., then S is a frequent subgraph

as sup(S) ≥ minSup ..

16.7 Frequent Subgraph Pattern Discovery 161

16.7.2 Finding Frequent Subgraph Patterns

The literature describes several algorithms for finding frequent subgraph patterns.

While there is no universally accepted best algorithm, gSpan [1] is widely used due

to its relatively faster performance than other algorithms. Below is a sample Python

script demonstrating how to use the gSpan algorithm from the PAMI package to

discover frequent subgraph patterns in a graph transactional database.

Program 5: Frequent Subgraph Pattern Discovery Using GSpan

1 from PAMI.subgraphMining.basic import gspan as alg

2 obj = alg.GSpan('Chemical_340.txt', minSupport=100)

3 obj.mine()

4 frequentGraphs = obj.getFrequentSubgraphs()

5 memUSS = obj.getMemoryUSS()

6 print("Total Memory in USS:", memUSS)

7 memRSS = obj.getMemoryRSS()

8 print("Total Memory in RSS", memRSS)

9 run = obj.getRuntime()

10 print("Total ExecutionTime in seconds:", run)

11 obj.save('frequentSupgraphs.txt')

16.7.3 Visualization of the Frequent Subgraphs

Since a subgraph represents the portion of a graph, one can visualize the generated

frequent subgraphs using the below-provided Python code.

Program 6: Visualizing of the Frequent Subgraphs

1 from PAMI.extras.visualize import graphs as vis

2 objVis = vis.graphDatabase(iFile=' frequentSupgraphs.txt')

3 objVis.plot()

162 16 Finding Useful Patterns in Graph Databases

16.8 Top-k Subgraphs

Specifying an appropriate minSup value to find frequent subgraphs is a nontrival

and challenging task in graph mining. When confronted with this problem in the

real-world applications, researchers tried to tackle it by mining top-k frequently

occurring subgraphs in a graph transactional database. The motivating reason is that

specifying k value is much easier than specifying the right minSup value.

16.8.1 Basic Model

Definition 16.6 (Top-k Subgraphs) Let P = {S1, S2, · · · , Sz}, z ≥ 1,. be an

ordered set of all subgraphs that can be generated from a graph transactional

database (GT D) such that sup(S1) ≥ sup(S2) ≥ · · · sup(Sz).. Let Q =

{S1, S2, · · · , Sk} ⊆ P, 1 ≤ k ≤ z,. denote the set of k subgraphs that have highest

support . That is ∀Sx ∈ P, sup(Sx) ≥ max(sup(Sy |∀Sy ∈ P − Q)., where

1 ≤ x ≤ k ≤ y ≤ z..

16.8.2 Finding Top-k Subgraphs

The PAMI library implements the popular TKG [3] algorithm to find top-k

subgraphs in a graph transactional database. Below is a sample Python script

demonstrating how to use the TKG algorithm from the PAMI package to discover

top-k subgraph patterns in a graph transactional database.

Program 7: Top-k Subgraphs Using T KG

1 from PAMI.subgraphMining.topK import tkg as alg

2 obj = alg.TKG(iFile='Chemical_340.txt',k=100)

3 obj.mine()

4 frequentGraphs = obj.getKSubgraphs()

5 memUSS = obj.getMemoryUSS()

6 print("Total Memory in USS:", memUSS)

7 memRSS = obj.getMemoryRSS()

8 print("Total Memory in RSS" , memRSS)

9 run = obj.getRuntime()

10 print("Total ExecutionTime in seconds:", run)

11 obj.save('frequentTopkSubgraphs.txt')

References 163

16.8.3 Visualization of the Top-k Subgraphs

Since a subgraph represents the portion of a graph, one can visualize the generated

top-k subgraphs using the Python code provided below.

Program 8: Visualizing the Results

1 from PAMI.extras.visualize import graphs as vis

2 objVis = vis.graphDatabase(iFile=' frequentTopkSubgraphs.txt')

3 objVis.plot()

16.9 Conclusion

In this chapter, we explored graph transactional databases and how they help

represent and analyze complex relationships in data. We examined the difference

between certain and uncertain graph databases, showing how they capture definite

and probabilistic connections. We also covered key concepts like storage formats,

conversion techniques, and tools for generating, visualizing, and analyzing graph

data. A primary focus was discovering frequent subgraph patterns, which play

a significant role in spotting recurring structures useful for pattern recognition,

anomaly detection, and knowledge discovery. With applications in fields like

social networks, bioinformatics, and chemistry, graph transactional databases are

a powerful tool for making sense of interconnected data, opening doors for further

research and innovation. The implementation code accompanying the examples in

this chapter can be accessed on our GitHub repository: https://github.com/UdayLab/

Hands-on-Pattern-Mining/blob/main/chapter16.ipynb.

References

1. Yan, X., and Han, J. (2002). gSpan: Graph-based substructure pattern mining. In Proceedings—

2002 IEEE International Conference on Data Mining, ICDM 2002 (pp. 721-724).

2. Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. 2009. Frequent subgraph pattern

mining on uncertain graph data. In Proceedings of the 18th ACM conference on Information

and knowledge management (CIKM ’09). Association for Computing Machinery, New York,

NY, USA, 583–592.

3. T. K. Saha and M. A. Hasan. FS3: A sampling based method for top-k frequent subgraph mining.

2014 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 2014, pp.

72–79.

https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb
https://github.com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter16.ipynb

Part III

Applications

Chapter 17

Discovering Air Pollution Patterns
Through the KDD Process

Abstract Air pollution is a critical global environmental challenge, causing sig-
nificant risks to public health, and ecosystems contributing to climate change.
Extracting actionable insights from real-world pollution data is crucial for under-
standing and mitigating these risks. This chapter presents a detailed methodology
for uncovering valuable patterns in air pollution data by applying the Knowledge
Discovery in Databases (KDD) process. Using over five years of hourly PM2.5 .

data collected from air quality sensors across Japan, we show how to preprocess,
transform, and analyze this data using a combination of Python libraries such as
Pandas, Scikit-learn, and PAMI. We walk through data acquisition, pattern discov-
ery, and visualization, emphasizing how spatial patterns of high pollution areas can
facilitate location-specific policy decisions. The findings highlight the effectiveness
of combining data science techniques with environmental data to address global
challenges. This chapter provides a replicable framework for applying the KDD
process in various large-scale datasets, demonstrating its relevance to environmental
monitoring and public health research.

17.1 Introduction

The previous sections of this book explored various types of real-world databases
and the methods used to extract valuable patterns based on user interests. In Part
3, we focus on integrating the PAMI (PAttern MIning) [1] library with popular
Python libraries, including Scikit-learn [3], TensorFlow [4], and Keras, to enhance
knowledge discovery in large datasets.

One of the most pressing environmental challenges today is air pollution, which
poses significant threats to human health, ecosystems, and the climate. Numerous
organizations have deployed extensive networks of air quality sensors to tackle
pollution, generating vast amounts of data. These datasets contain invaluable
insights that could guide policymakers and environmental scientists in making data-
driven decisions. However, extracting meaningful information from these datasets
can be challenging due to the noisy and complex nature of real-world data.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
U. K. Rage, Hands-on Pattern Mining,
https://doi.org/10.1007/978-981-96-6791-8_17

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 17&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_17
https://doi.org/10.1007/978-981-96-6791-8_17
https://doi.org/10.1007/978-981-96-6791-8_17
https://doi.org/10.1007/978-981-96-6791-8_17
https://doi.org/10.1007/978-981-96-6791-8_17
https://doi.org/10.1007/978-981-96-6791-8_17
https://doi.org/10.1007/978-981-96-6791-8_17
https://doi.org/10.1007/978-981-96-6791-8_17
https://doi.org/10.1007/978-981-96-6791-8_17
https://doi.org/10.1007/978-981-96-6791-8_17
https://doi.org/10.1007/978-981-96-6791-8_17

168 17 Discovering Air Pollution Patterns Through the KDD Process

This chapter describes the Knowledge Discovery in Databases (KDD) process, a
systematic method for extracting valuable knowledge from large datasets. Specifi-
cally, we focus on discovering pollution patterns in the PM2.5 . data collected over
five years from various air quality sensors across Japan [2]. Figure 17.1 visually
represents the KDD process, outlining the significant steps in identifying pollution
hotspots and extracting actionable insights.

Fig. 17.1 The KDD process for discovering PM2.5 . pollution patterns in the data

17.2 A Step-by-Step Guide to the KDD Process 169

17.2 A Step-by-Step Guide to the KDD Process

KDD involves several key steps, each critical to extracting valuable insights from
raw data. Below is a step-by-step breakdown of how we apply KDD to air pollution
data.

17.2.1 Step 1: Requirements

In this first step, you must install the necessary Python libraries to facilitate data
processing, analysis, and pattern discovery. The key libraries we will use are:

• Pandas: Used for data manipulation and cleaning. This library will help us store
the pollution data, perform basic analysis, remove unnecessary columns, and
handle missing data.

• Scikit-learn: This library will be used for data preprocessing tasks such as impu-
tation (filling in missing values) and other machine learning-related operations.

• PAMI: The core library for pattern mining. PAMI will help transform the
dataset into a transactional database, mine frequent patterns, and visualize spatial
patterns in the data.

To install these libraries, you can use the following command:

$ pip install pami scikit-learn pandas

The experiment uses over five years of hourly PM2.5 . data collected from
sensors deployed by the Atmospheric Environmental Regional Observation System
(AEROS). This dataset covers the entire country of Japan. You can download
the dataset from the following link: https://www.dropbox.com/s/wa8d1sujzlx56hh/
ETL_DATA_new.csv.

17.2.2 Step 2: Selecting the Target Data

Once the data is downloaded, we load it into a Pandas Dataframe. The dataset
includes a column labeled timestamp, which records the hourly intervals at which
the data was collected. Additionally, each air quality sensor is identified by its
unique location, represented as Point(X, Y)., where X . and Y . are the geographical
coordinates of the sensor.

Here is how you can load the data into a dataframe:

>>> import pandas as pd

>>> dataset=pd.read_csv('ETL_DATA_new.csv',index_col=0)

>>> dataset

The sample data stored in the dataframe is shown in Fig. 17.2. To clean and refine
the dataset, we first remove the timestamp column and any attributes that do not

https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv

170 17 Discovering Air Pollution Patterns Through the KDD Process

Fig. 17.2 Air pollution dataset

contain location information (i.e., columns with “Unnamed” in their name). This
step ensures that we are only working with relevant data.

>>> dataset.drop('TimeStamp', inplace=True, axis=1)

>>> sensors=[col for col in dataset if 'Unnamed' in col]

>>> dataset.drop(columns=sensors, inplace =True, axis=1)

>>> dataset

17.2.3 S tep 3: Preprocessing

In this step, we perform several data cleaning and normalization tasks to prepare the
data for analysis. Specifically, we:

• Replace invalid or missing values with NaN to mark them for i mputation.
• Remove sensors (columns) with more than 80% missing data.
• Use Hot-Deck imputation to fill in the remaining missing values by replacing

them with values from similar records.

The following Python code snippet shows how we implement these steps:

>>> dataset.replace(['None', 'Nan'],np.nan,inplace=True)

>>> dataset.where(dataset <= 250, np.nan, inplace=True)

>>> dataset.where(dataset > 0, 0, inplace=True)

>>>

>>> threshold = 0.8 * len(dataset)

>>> dataset = dataset.dropna(thresh=threshold , axis=1)

>>> dataset = hotDeckImputation(dataset)

17.2 A Step-by-Step Guide to the KDD Process 171

The function for Hot-Deck imputation is defined as follows:

Program 1: Hot-Deck Imputation

1 from sklearn.utils import shuffle

2 def hotDeckImputation(df):

3 df_imputed = df.copy()

4 for column in df_imputed.columns:

5 missing_idx = df_imputed[column].isnull()

6 non_missing_values = df_imputed.loc[~missing_idx,

column]→֒

7 donor_pool = shuffle(non_missing_values,

random_state=42).reset_index(drop=True)→֒

8 donor_pool_expanded = np.resize(donor_pool.values,

missing_idx.sum())→֒

9 df_imputed.loc[missing_idx, column] =

donor_pool_expanded →֒

10 return df_imputed

17.2.4 Step 4: Data Transformation

At this stage, we convert the dataset into a transactional database format for frequent
pattern mining. PM2.5 . values greater than or equal to 35 are considered hazardous.
Therefore, we set this as the threshold and convert the dataset into a binary format,
where timestamps and locations with hazardous pollution levels are represented.

>>> from PAMI.extras.convert import denseDF2DB as db

>>> obj = db.denseDF2DB(dataset)

>>> obj.convert2TransactionalDatabase('TDB.csv','>= ',35)

17.2.5 Step 5: Pattern Discov ery

Now that we have transformed the data into a transactional format, we apply
frequent pattern mining algorithms such as FP-growth to identify pollution hotspots.
These hotspots represent locations where people were frequently exposed to high
PM2.5 . levels.

>>> from PAMI.frequentPattern.basic import FPGrowth as ab

>>> obj = ab.FPGrowth('TDB.csv', 500)

172 17 Discovering Air Pollution Patterns Through the KDD Process

>>> obj.mine()

>>> obj.printResults()

>>> obj.save('FPs.txt')

17.2.6 Step 6 : Visualization of Patterns

Once we have discovered the frequent patterns, we visualize their spatial distribu-
tion. This helps us understand the geographical areas with the most consistent high
pollution levels.

The following code generates a visualization of the pollution patterns:

>>> from PAMI.extras.graph import visualizePatterns as fig

>>> obj = fig.visualizePatterns('FPs.txt', 10)

>> > obj.visualize(width=1000, height =900)

Figure 17.3 shows the distribution of high pollution levels across Japan, high-
lighting both sporadic pollution events and consistent hotspots. Areas 1 and 2 in
the figure represent regions with high pollution levels, suggesting that people living
near these sensors are often exposed to harmful air quality. This repeated exposure
in specific locations poses significant health risks to the local population.

On the other hand, Areas 3 and 4 show high pollution levels near individual
sensors, but with a key difference: The sensors are far apart. While people near each
sensor are exposed to harmful pollution, these areas are less likely to impact the
same community, as the sensors are geographically distant.

These insights are valuable for guiding policy decisions. Areas 1 and 2, with
concentrated high pollution, should be prioritized for interventions to reduce

Fig. 17.3 Spatial visualization of the top-10 long frequent pollution patterns

References 173

exposure. In contrast, Areas 3 and 4, despite frequent pollution events, may require
less urgent action, but further investigation is needed to understand the exposure
risks fully. This information can help target pollution reduction efforts where they
are most needed to protect public health.

17.3 Conclusion

In this chapter, we demonstrated how the KDD process can be applied to uncover
pollution patterns in Japan using over five years of PM2.5 . data. By combining
modern Python libraries such as Pandas, Scikit-learn, and PAMI, we successfully
transformed raw pollution data into actionable insights through preprocessing, data
transformation, frequent pattern mining, and spatial visualization.

The results revealed consistent pollution hotspots that can guide targeted policy
interventions to reduce air pollution. This methodology underscores the power
of integrating data science tools with environmental data to address pressing
global challenges. Future work can expand this approach to other pollutants, apply
predictive modeling techniques, and extend the framework to different regions,
further enhancing its impact on global environmental monitoring and public health.

References

1. Uday Kiran Rage, Veena Pamalla, Masashi Toyoda, Masaru Kitsuregawa. PAMI.
https://github.com/UdayLab/PAMI, 2024. [Online accessed 13-March-2025].

2. Ministry of the Environment. Atmospheric Environmental Regional Observation System:
AEROS. https://soramame.env.go.jp/download, 2018. [Online accessed 13-March-2025].

3. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vander-
plas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard
Duchesnay. 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, null
(2/1/2011), 2825–2830.

4. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg
S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mane, Mike Schuster, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

Chapter 18

Discovering Futuristic Pollution Patterns
Using Forecasting and Pattern Mining

Abstract This chapter presents a framework for forecasting air pollution levels and
uncovering hidden patterns using machine learning and frequent pattern mining.
We analyze over five years of hourly PM2.5 . data from Japan’s Atmospheric
Environmental Regional Observation System (AEROS). The dataset undergoes
preprocessing, including handling missing values and normalizing sensor data. A
long short-term memory (LSTM) model predicts future pollution levels across
sensors. The forecasted data is then transformed into a transactional database, where
hazardous pollution levels are identified using a predefined threshold value. The
FP-growth algorithm is applied to extract recurring pollution patterns, highlighting
critical pollution hotspots. These insights help policymakers develop effective
pollution mitigation strategies.

18.1 Introduction

Building on the previous chapter, which explored Python-based pattern discovery
in air pollution time series data, this chapter integrates forecasting techniques.
We develop a model that predicts pollution levels and extracts meaningful pat-
terns from the forecasted data. Figure 18.1 illustrates the framework for dis-
covering pollution patterns from predicted data. The Python code of exercise is
accessible at https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-
Mining/blob/main/chapter18.ipynb.

18.2 Step-by-Step Guide to Discovering Future Pollution

Patterns

18.2.1 Step 1: Install Required Libraries

In this first step, the necessary Python libraries must be installed to facilitate data
processing, analysis, and pattern discovery. The key libraries we will use are:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
U. K. Rage, Hands-on Pattern Mining,
https://doi.org/10.1007/978-981-96-6791-8_18

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 18&domain=pdf
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter18.ipynb
https://doi.org/10.1007/978-981-96-6791-8_18
https://doi.org/10.1007/978-981-96-6791-8_18
https://doi.org/10.1007/978-981-96-6791-8_18
https://doi.org/10.1007/978-981-96-6791-8_18
https://doi.org/10.1007/978-981-96-6791-8_18
https://doi.org/10.1007/978-981-96-6791-8_18
https://doi.org/10.1007/978-981-96-6791-8_18
https://doi.org/10.1007/978-981-96-6791-8_18
https://doi.org/10.1007/978-981-96-6791-8_18
https://doi.org/10.1007/978-981-96-6791-8_18
https://doi.org/10.1007/978-981-96-6791-8_18

Fig. 18.1 The framework for identifying futuristic pollution patterns

• Pandas [2]: Used for data manipulation and cleaning. This library will help us
store the pollution data, perform basic analysis, remove unnecessary columns,
and handle missing data.

• Scikit-learn [4]: This library will be used for data preprocessing tasks such
as imputation (filling in missing values) and other machine learning-related
operations.

• TensorFlow [5]: This library will be used for building the prediction model for
every sensor in the data. The long short-term memory (LSTM) algorithm is used
for model building.

• PAMI [1]: The core library for pattern mining. PAMI will help transform the
dataset into a transactional database, mine frequent patterns, and visualize spatial
patterns in the data.

To install these libraries, you can use the following command:

$ pip install pami scikit-learn pandas tensorflow

The experiment uses more than five years of hourly PM2.5 . data collected
from sensors deployed by the Atmospheric Environmental Regional Observation
System (AEROS) [3]. This dataset covers the entire country of Japan. The readers
can download the dataset from the following link: https://www.dropbox.com/s/
wa8d1sujzlx56hh/ETL_DATA_new.csv.

18.2.2 Step 2: Selecting the Target Data

Once the data is downloaded, we load it into a Pandas DataFrame. The dataset
includes a column labeled timestamp, which records the hourly intervals at which
the data was collected. Additionally, each air quality sensor is identified by its
unique location, represented as Point(X, Y)., where X . and Y . are the geographical
coordinates of the sensor.

176 18 Discovering Futuristic Pollution Patterns Using Forecasting and Pattern Mining

https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv
https://www.dropbox.com/s/wa8d1sujzlx56hh/ETL_DATA_new.csv

18.2 Step-by-Step Guide to Discovering Future Pollution Patterns 177

Fig. 18.2 Sample air pollution dataset

Here is how you can load the data into a dataframe:

>>> import pandas as pd

>>> dataset=pd.read_csv('ETL_DATA_new.csv',index_col= 0)

>> > dataset

The sample data stored in the dataframe is shown in Fig. 18.2. To clean and refine
the dataset, we first remove the timestamp column and any attributes that do not
contain location information (i.e., columns with “Unnamed” in their name). This
step ensures that we are only working with relevant data.

>>> dataset.drop('TimeStamp', inplace =True , axis =1)

>>> unnamed_columns = [col for col in dataset.columns \

>>> if 'Unnamed' in col]

> >> dataset.drop(unnamed_columns , axis=1, inplace=True)

>>> dataset

18.2.3 Step 3: Preprocessing

In this step, we perform several data cleaning and normalization tasks to prepare the
data for analysis. Specifically, we:

• Replace invalid or missing values with NaN to mark them for i mputation.
• Remove sensors (columns) with more than 80% missing data.
• Use Hot-Deck imputation to fill in the remaining missing values by replacing

them with values from similar records.

The following Python program shows how we implement these three steps:

178 18 Discovering Futuristic Pollution Patterns Using Forecasting and Pattern Mining

Program 1: Hot-Deck Imputation

1 import numpy as np

2 from sklearn.utils import shuffle

3

4 def hotDeckImputation(dataset):

5 imputed_dataset = dataset.copy()

6 for column in imputed_dataset.columns:

7 missing_idx = imputed_dataset[column].isnull()

8 non_missing_values = imputed_dataset.loc[missing_idx,

column]→֒

9 donor_pool = shuffle(non_missing_values,

random_state=42).reset_index(drop=True)→֒

10 donor_pool_expanded = np.resize(donor_pool.values,

missing_idx.sum())→֒

11 imputed_dataset.loc[missing_idx, column] =

donor_pool_expanded→֒

12 return imputed_dataset

>>> import numpy as np

>>> dataset.replace(['None', 'Nan'], np.nan,

>>> inplace=True)

>>> dataset.where(dataset <= 250, np.nan, inplace=True)

>>> dataset.where(dataset > 0, 0, inplace=True)

>>> threshold = 0.8 * len(dataset)

>> > dataset = dataset.dropna(thresh=threshold , axis=1)

>>> dataset = hotDeckImputation(dataset)

>>> dataset

18.2.4 Step 4: Building Forecast Model

In this step, we apply the renowned LSTM technique to pollution forecast values of
the sensors in the database.

Program 2: LSTM Model

1 import pandas as pd
2 import numpy as np
3 from sklearn.preprocessing import MinMaxScaler
4 import tensorflow as tf

18.2 Step-by-Step Guide to Discovering Future Pollution Patterns 179

5 from tensorflow.keras.models import Sequential
6 from tensorflow.keras.layers import LSTM, Dense, Dropout, Input
7

8 # Assuming you have your 'dataset' loaded before this part
9 num_columns = int(input("How many columns would you like to predict? "))

10 columns_to_predict = dataset.columns[:num_columns]
11 all_predictions = {}
12

13 for index, column in enumerate(columns_to_predict, 1):
14 print(f"Processing column {index}/{len(columns_to_predict)}:

{column}")→֒

15 data = pd.to_numeric(dataset[column],
errors='coerce').dropna().values.reshape(-1, 1)→֒

16 scaler = MinMaxScaler()
17 data_scaled = scaler.fit_transform(data)
18 X, y = [], []
19 for i in range(len(data_scaled) - 1):
20 X.append(data_scaled[i:i+1, 0])
21 y.append(data_scaled[i+1, 0])
22 X, y = np.array(X), np.array(y)
23 X = X.reshape(X.shape[0], X.shape[1], 1)
24

25 model = Sequential()
26 model.add(Input(shape=(1, 1)))
27 model.add(LSTM(units=50))
28 model.add(Dropout(0.2))
29 model.add(Dense(units=50))
30 model.add(Dense(1))
31

32 model.compile(loss='mean_squared_error', optimizer='adam')
33 model.fit(X, y, epochs=10, batch_size=32, verbose=0)
34

35 next_hours_input = X[-1:]
36 next_hours_predictions = []
37

38 for _ in range(24):
39 next_hour_prediction = model.predict(next_hours_input, verbose=0)
40 next_hours_predictions.append(next_hour_prediction.flatten()[0])
41 next_hours_input = np.array([[next_hour_prediction.flatten()[0]]])
42 next_hours_input = next_hours_input.reshape(1, 1, 1)
43

44 next_hours_predictions =
scaler.inverse_transform(np.array(next_hours_predictions).reshape
(-1, 1))

→֒

→֒

45 all_predictions[column] = next_hours_predictions.flatten()
46

47 predictions_df = pd.DataFrame(all_predictions)
48

49 output_path = 'LSTM_predicted_values.csv'
50 predictions_df.to_csv(output_path, index_label='Index')
51 print(f"Predictions saved")

180 18 Discovering Futuristic Pollution Patterns Using Forecasting and Pattern Mining

18.2.5 Step 5: Converting the Predicted Multiple Timeseries

Data into a Transactional Database

At this stage, we convert the dataset into a transactional database format for frequent
pattern mining. PM2.5 . values greater than or equal to 8 are considered hazardous.
Therefore, we set this as the threshold and convert the dataset into a binary format,
where timestamps and locations with hazardous pollution levels are represented.

>>> from PAMI.extras. convert import denseDF2DB as db

>>> obj = db. denseDF2DB (predictions_df)

>>> ob j. convert2TransactionalDatabase

>>> ('TDB.csv',' >=',8)

Next, we derive the statistical details of the transactional database to understand
the distribution of items’ frequencies. Understanding this distribution is crucial to
specify an appropriate minimum support value.

>>> from PAMI.extras.dbStats import

>>> TransactionalDatabase as tds

>>> obj = tds.TransactionalDatabase('TDB.csv')

>>> obj.run()

>>> obj .printStats()

>>> obj. plotGraphs()

18.2.6 Step 6: Pattern Discovery

Now that we have transformed the data into a transactional format and understood
the distributions of its items and transactions, we apply frequent pattern mining
algorithms such as FP-growth to identify pollution hotspots. These hotspots repre-
sent locations where people were frequently exposed to high PM2.5 . levels.

>>> from PAMI. frequentPattern .basic import FPGrowth

>>> as ab

>>> obj = ab. FPGrowth ('TDB.csv', 15)

>>> obj.mine ()

>>> o bj. printResults ()

>>> obj.save(' FPs.txt')

18.2.7 Step 6: Visualization of Patterns

Once we have discovered the frequent patterns, we can visualize their spatial
distribution by using the following code:

>>> from PAMI.extras.graph import visualizePatterns

>>> as fig

18.3 Conclusion 181

Fig. 18.3 Spatially the areas that may witness high pollution levels shortly

>>> obj = fig. visualizePatterns ('FPs.txt ', 1)

>>> o bj. visualize (width =1000 , height =900)

Figure 18.3 shows the distribution of high pollution levels across Japan, high-
lighting both sporadic pollution events and consistent hotspots. The two areas in
this figure represent regions that may witness high pollution shortly. This repeated
exposure in specific locations poses significant health risks to the local population.

These insights are valuable for guiding policy decisions. Areas 1 and 2, with
concentrated high pollution, should be prioritized for interventions to reduce
exposure. In contrast, Areas 3 and 4, despite frequent pollution events, may require
less urgent action, but further investigation is needed to understand the exposure
risks fully. This information can help target pollution reduction efforts where they
are most needed to protect public health.

18.3 Conclusion

This chapter presented a systematic approach to forecasting air pollution levels and
uncovering hidden patterns in the predicted data. By leveraging historical PM2.5 .

sensor data and employing an LSTM-based forecasting model, we demonstrated
how future pollution trends can be predicted with high temporal granularity.
The transformation of forecasted data into a transactional database enabled the
application of frequent pattern mining techniques, revealing critical pollution
hotspots across different geographical regions. The visualized patterns provided
actionable insights, highlighting areas with consistently high pollution levels and

182 18 Discovering Futuristic Pollution Patterns Using Forecasting and Pattern Mining

identifying potential health risks for nearby populations. These findings can serve
as a foundation for policymakers and environmental agencies to implement targeted
interventions and improve air quality management strategies. Future work could
extend this approach by incorporating additional meteorological factors, refining
prediction models, and exploring adaptive pattern detection methods to enhance the
accuracy and reliability of pollution forecasts.

References

1. Uday Kiran Rage, Veena Pamalla, Masashi Toyoda, Masaru Kitsuregawa. PAMI.
https://github.com/UdayLab/PAMI, 2024. [Online accessed 13-March-2025].

2. Wes McKinney. Data Structures for Statistical Computing in Python. Proceedings of the 9th
Python in Science Conference. pp. 56–61, 2010.

3. Ministry of the Environment. Atmospheric Environmental Regional Observation System:
AEROS. https://soramame.env.go.jp/download, 2018. [Online accessed 13-March-2025].

4. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12,
(2/1/2011), 2825–2830.

5. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg
S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mane, Mike Schuster, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org

	Preface
	Acknowledgments
	Contents
	Part I Fundamentals
	1 Getting Started with PAMI: Introduction, Maintenance,and Usage
	1.1 Origins
	1.2 Architecture
	1.3 Inputs and Outputs of a Mining Algorithm
	1.4 Maintaining the PAMI Package
	1.5 Execution of Algorithms
	1.5.1 Terminal Execution
	1.5.2 Importing an Algorithm

	1.6 Evaluating Multiple Pattern Mining Algorithm
	1.7 Plotting the Results
	1.8 Exporting the Results in Latex Format
	1.9 Contributing
	1.10 Support
	1.11 Conclusion
	References

	2 Handling Big Data: Classification, Storage, and Processing Techniques
	2.1 Basic Classifications of Big Data
	2.1.1 Based on Data Structure
	2.1.2 Based on Veracity
	2.1.3 Based on the Attribute's Value
	2.1.4 Based on the Attribute's Dimensionality
	2.1.5 Based on Storage

	2.2 Approaches for Storing Big Data
	2.3 Processing Big Data
	2.4 Conclusion
	References

	3 Transactional Databases: Representation, Creation, and Statistics
	3.1 Introduction
	3.2 Theoretical Representation
	3.3 Practical Representation
	3.4 Creating Synthetic Transactional Databases
	3.5 Deriving a Transactional Database from a Dataframe
	3.6 Knowing the Statistical Details
	3.7 Conclusion
	Reference

	4 Pattern Discovery in Transactional Databases
	4.1 Introduction
	4.2 Frequent Patterns
	4.2.1 Basic Model
	4.2.2 Search Space
	4.2.3 The Apriori Property
	4.2.4 Finding Frequent Patterns
	4.2.5 Popular Variants of Frequent Patterns
	4.2.5.1 Closed Frequent Patterns
	4.2.5.2 Maximal Frequent Patterns
	4.2.5.3 Top-k Frequent Patterns

	4.3 The Rare Item Problem in Frequent Pattern Mining
	4.4 Solutions to the Rare Item Problem
	4.4.1 Finding Frequent Patterns Using Multiple Minimum Supports
	4.4.2 Correlated Patterns
	4.4.3 Relative Frequent Patterns
	4.4.4 Fault-Tolerant Patterns

	4.5 Discovering Association Rules
	4.6 Conclusion
	References

	5 Temporal Databases: Representation, Creation, and Statistics
	5.1 Introduction
	5.2 Theoretical Representation
	5.3 Practical Representation
	5.4 Creating Synthetic Temporal Databases
	5.5 Deriving a Temporal Database from a Dataframe
	5.6 Knowing the Statistical Details
	5.7 Conclusion
	References

	6 Pattern Discovery in Temporal Databases
	6.1 Introduction
	6.2 Periodic-Frequent Patterns
	6.2.1 The Basic Model
	6.2.2 Search Space and Apriori Property
	6.2.2.1 Search Space
	6.2.2.2 Apriori Property

	6.2.3 Finding Periodic-Frequent Patterns

	6.3 Popular Variants of Periodic-Frequent Patterns
	6.3.1 Closed Periodic-Frequent Patterns
	6.3.2 Maximal Periodic-Frequent Patterns
	6.3.3 Top-k Periodic-Frequent Patterns

	6.4 Main Issues of Periodic-Frequent Pattern Mining
	6.5 Addressing the Rare Item Problem
	6.5.1 Periodic-Correlated Pattern Mining
	6.5.2 Implementation Example: Finding Periodic-Correlated Patterns

	6.6 Finding Partial Periodic Patterns
	6.6.1 Partial Periodic-Frequent Patterns
	6.6.2 Partial Periodic Patterns
	6.6.3 Recurring Patterns

	6.7 Conclusion
	References

	7 Spatial Databases: Representation, Creation, and Statistics
	7.1 Introduction
	7.2 Theoretical Representation
	7.2.1 Spatial Database
	7.2.2 Geo-referenced Transactional Database
	7.2.3 Geo-referenced Temporal Database

	7.3 Practical Representation
	7.3.1 Spatial Database
	7.3.2 Geo-referenced Transactional Database
	7.3.3 Geo-referenced Temporal Database

	7.4 Creating Synthetic Datasets
	7.4.1 Generating Synthetic Geo-referenced TransactionalDatabase
	7.4.2 Generating Synthetic Geo-referenced TemporalDatabase

	7.5 Deriving Geo-referenced Databases from a Dataframe
	7.5.1 Dataframe to Geo-referenced Transactional Database
	7.5.2 Dataframe to Geo-referenced Temporal Database

	7.6 Knowing the Statistical Details
	7.6.1 Statistical Details of a Geo-referenced Transactional Database
	7.6.2 Statistical Details of a Geo-referenced Temporal Database

	7.7 Conclusion
	References

	8 Pattern Discovery in Spatial Databases
	8.1 Introduction
	8.2 Neighboring Items
	8.2.1 Definition
	8.2.2 Practical Representation
	8.2.3 Creating Neighborhood File

	8.3 Geo-referenced Frequent Pattern
	8.3.1 The Basic Model
	8.3.2 Handling the Search Space
	8.3.3 Finding Geo-referenced Frequent Patterns

	8.4 Geo-referenced Periodic-Frequent Pattern
	8.4.1 The Basic Model
	8.4.2 Handling the Search Space
	8.4.3 Finding Geo-referenced Periodic-Frequent Patterns

	8.5 Conclusion
	References

	9 Utility Databases: Representation, Creation, and Statistics
	9.1 Introduction
	9.2 Theoretical Representation
	9.3 Practical Representation
	9.4 Creating Synthetic Utility Databases
	9.5 Deriving a Utility Database from a Dataframe
	9.6 Understanding the Statistical Details
	9.7 Variants of Utility Databases
	9.7.1 Temporal Utility Database
	9.7.2 Geo-referenced Transactional Utility Database
	9.7.3 Geo-referenced Temporal Utility Database

	9.8 Conclusion
	References

	10 Pattern Discovery in Utility Databases
	10.1 Introduction
	10.2 High Utility Patterns
	10.2.1 Basic Model
	10.2.2 Search Space
	10.2.3 Finding High Utility Patterns

	10.3 High Utility Frequent Patterns
	10.3.1 Basic Model
	10.3.2 Search Space
	10.3.3 Finding High Utility Frequent Patterns

	10.4 Conclusion
	References

	11 Sequence Databases: Representation, Creation, and Statistics
	11.1 Introduction
	11.2 Theoretical Representation
	11.3 Practical Representation
	11.4 Creating Synthetic Sequence Databases
	11.5 Deriving a Sequence Database from a Dataframe
	11.6 Knowing the Statistical Details
	11.7 Conclusion
	References

	12 Pattern Discovery in Sequence Databases
	12.1 Introduction
	12.2 Frequent Sequence Patterns
	12.2.1 Basic Model
	12.2.2 Search Space
	12.2.3 Mining Algorithm

	12.3 Conclusion
	References

	Part II Advanced Concepts
	13 Mining Symbolic Sequences
	13.1 Introduction
	13.2 Theoretical Representation
	13.3 Practical Representation
	13.4 Creating Synthetic Symbolic Sequence Databases
	13.5 Knowing the Statistical Details
	13.6 Frequent Contiguous Patterns
	13.6.1 Basic Model
	13.6.2 Mining Algorithm

	13.7 Conclusion

	14 Pattern Discovery in Fuzzy Databases
	14.1 Introduction
	14.2 Theoretical Representation
	14.3 Practical Representation
	14.4 Fuzzy Frequent Patterns
	14.4.1 Basic Model
	14.4.2 Mining Algorithm

	14.5 Other Types of Fuzzy Databases
	14.6 Conclusion
	References

	15 Knowledge Discovery in Uncertain Databases
	15.1 Introduction
	15.2 Theoretical Representation
	15.3 Practical Representation
	15.4 Creating Synthetic Uncertain Transactional Database
	15.5 Converting a Dataframe into an Uncertain TransactionalDatabase
	15.6 Obtaining Statistical Details
	15.7 Frequent Pattern Discovery
	15.7.1 Basic Model
	15.7.2 Search Space
	15.7.3 Inability of Apriori Property
	15.7.4 Finding Frequent Patterns

	15.8 Conclusion
	References

	16 Finding Useful Patterns in Graph Databases
	16.1 Introduction
	16.2 Theoretical Representation
	16.3 Practical Representation
	16.3.1 Traditional Format
	16.3.2 Compressed Format
	16.3.3 Procedures for Converting Traditional into Compressed Format

	16.4 Creating Synthetic Graph Transactional Database
	16.5 Visualizing the Graph Database
	16.6 Obtaining Statistical Details
	16.7 Frequent Subgraph Pattern Discovery
	16.7.1 Basic Model
	16.7.2 Finding Frequent Subgraph Patterns
	16.7.3 Visualization of the Frequent Subgraphs

	16.8 Top-k Subgraphs
	16.8.1 Basic Model
	16.8.2 Finding Top-k Subgraphs
	16.8.3 Visualization of the Top-k Subgraphs

	16.9 Conclusion
	References

	Part III Applications
	17 Discovering Air Pollution Patterns Through the KDD Process
	17.1 Introduction
	17.2 A Step-by-Step Guide to the KDD Process
	17.2.1 Step 1: Requirements
	17.2.2 Step 2: Selecting the Target Data
	17.2.3 Step 3: Preprocessing
	17.2.4 Step 4: Data Transformation
	17.2.5 Step 5: Pattern Discovery
	17.2.6 Step 6: Visualization of Patterns

	17.3 Conclusion
	References

	18 Discovering Futuristic Pollution Patterns Using Forecasting and Pattern Mining
	18.1 Introduction
	18.2 Step-by-Step Guide to Discovering Future Pollution Patterns
	18.2.1 Step 1: Install Required Libraries
	18.2.2 Step 2: Selecting the Target Data
	18.2.3 Step 3: Preprocessing
	18.2.4 Step 4: Building Forecast Model
	18.2.5 Step 5: Converting the Predicted Multiple Timeseries Data into a Transactional Database
	18.2.6 Step 6: Pattern Discovery
	18.2.7 Step 6: Visualization of Patterns

	18.3 Conclusion
	References

