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Preface 

Pattern mining, a fundamental concept in data science and machine learning, is at 

the heart of discovering valuable insights from real-world big data. This book delves 

into the intricate world of pattern mining, offering a comprehensive theoretical and 

practical guide for beginners and seasoned practitioners. 

In the current data-driven era, where information overload is a significant 

challenge for enterprises, the ability to uncover meaningful patterns from big data 

has become indispensable. Pattern mining enables us to make informed decisions by 

discovering useful information in numerous forms (e.g., frequent, recurring, high-

utility, and periodic patterns) across various domains (e.g., retail, healthcare, and 

finance). 

This book is designed to be a practical companion, blending theoretical foun-

dations with hands-on techniques and applications. It covers a spectrum of topics 

ranging from basic concepts to advanced techniques. The practical examples in 

this book are covered using an open-source PAttern MIning (PAMI) library. The 

implementation code and the sample datasets accompanying the examples in this 

book can be accessed on our GitHub repository: https://github.com/UdayLab/ 

Hands-on-Pattern-Mining. 

Throughout this book, readers will explore different types of datasets, algorithms, 

methodologies, and interestingness metrics used in pattern mining. While the book 

focuses primarily on mining certain data, it also touches upon emerging trends and 

innovations, such as pattern mining in uncertain data and integration with machine 

learning techniques. 

Whether you are a student, researcher, data scientist, or industry practitioner, 

this book aims to be a valuable resource. It provides theoretical insights and 

practical guidance on effectively navigating the complexities of pattern mining. This 

book also guides researchers in evaluating the algorithms, plotting the results, and
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viii Preface

generating the latex files for publication purposes. We hope this book serves as a 

beacon of knowledge, empowering readers to unlock the hidden treasures buried in 

their data. 

Happy mining! 

Aizu-Wakamatsu, Fukushima, Japan Uday Kiran Rage 

March 2025 
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Chapter 1 

Getting Started with PAMI: 
Introduction, Maintenance, and Usage 

Abstract Pattern mining is essential for uncovering valuable patterns hidden in 

big data. While software such as WEKA, Mahout, SPMF, and Knime offer some 

capabilities, they are often limited in algorithms or integration. To overcome 

these limitations, researchers at the University of Aizu have developed the pattern 

mining (PAMI) package. This open-source Python package, available on GitHub 

and distributed through the Python Package Index, offers over 80 algorithms to 

identify user interest-based patterns in various databases across multiple computing 

environments. This chapter introduces the architecture and systematic organization 

of the algorithms in PAMI. It provides detailed guidance on the installation, 

maintenance, and execution of the algorithms in PAMI, both from the terminal and 

within Python programs. Additionally, the chapter explains the input and output 

requirements for the algorithms, including how they report runtime and memory 

usage. Through practical examples and instructions, this chapter aims to help users 

effectively utilize the PAMI package for pattern mining tasks. 

1.1 Origins 

Pattern mining is a crucial big data analytical technique to uncover interesting 

patterns hidden in the data. This technique has numerous real-world applica-

tions. For example, in market basket analysis, pattern mining helps businesses 

understand which products are frequently purchased together, supporting inventory 

management and targeted marketing. In cybersecurity, pattern mining is crucial for 

anomaly detection, enabling the identification of unusual patterns that could indicate 

fraudulent activities or security breaches. In transportation systems, pattern mining 

assists in identifying frequently congested road segments, which is valuable for 

urban planning and optimizing route recommendations. 

Existing pattern mining tools like WEKA [1], Mahout [2], Knime [3], Rapid-

Miner [4], MLxtend [5], and Orange [6] typically offer limited algorithms. While 

these tools are helpful, they may not adequately address the diverse needs of users 

working with various data types and analytical tasks. On the other hand, specialized 

software like Coron [7] and LUCS-KDD [8] provides a broader array of algorithms 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
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tailored for more specific pattern mining tasks. These tools offer greater flexibility 

and capability in handling complex data mining needs. However, they often come 

with challenges like outdated development, limited customization, and restricted 

commercial use. 

The Sequence Pattern Mining Framework (SPMF) [9] stands out for its com-

prehensive algorithms for discovering useful patterns from various databases, 

including transactional, sequential, and graph databases. However, its Java-based 

implementation can raise challenges in integrating with popular Python-based 

machine learning libraries like TensorFlow, PyTorch, and Scikit-learn, which are 

commonly used in data science. 

To address the limitations of current pattern mining tools, researchers at the 

University of Aizu have developed the PAttern MIning (PAMI) [10] package. This 

open-source Python package, licensed under the GNU V3 License, provides over 80 

algorithms for identifying user interest-based patterns across various databases and 

computing environments. 

•! Attention 
The open-source PAMI package is supplied under the GNU V3 License. 

PAMI is designed to be cross-platform, working seamlessly on Windows, Linux, 

and macOS. It is hosted on GitHub,1 which fosters transparency and encourages 

collaborative development. Users can install, update, or uninstall the package via 

the Python Package Index2 using the pip command. 

For detailed guidance, PAMI offers comprehensive documentation on Read 

the Docs,3 which covers its features, installation, and usage. Additionally, PAMI 

includes practical examples in Jupyter Notebooks, which can be run on platforms 

like Google Colab or local machines. These interactive notebooks help users of all 

skill levels learn and experiment with PAMI’s extensive pattern mining capabilities. 

1.2 Architecture 

The PAMI package adheres to camel casing naming conventions and organizes 

its algorithms using a hierarchical structure. This systematic arrangement aids in 

navigating and retrieving algorithms based on their characteristics and functions. 

The hierarchical structure is outlined as follows:

1 The PAMI package’s source code can be found at https://github.com/UdayLab/PAMI. 
2 The distribution URL of the PAMI package is https://pypi.org/project/pami/. 
3 The URL for code documentation is https://pami-1.readthedocs.io/en/latest/. 

https://github.com/UdayLab/PAMI
https://github.com/UdayLab/PAMI
https://github.com/UdayLab/PAMI
https://github.com/UdayLab/PAMI
https://github.com/UdayLab/PAMI
https://pypi.org/project/pami/
https://pypi.org/project/pami/
https://pypi.org/project/pami/
https://pypi.org/project/pami/
https://pypi.org/project/pami/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
https://pami-1.readthedocs.io/en/latest/
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1. Package Name: The top-level category is “PAMI,” encompassing all algorithms 

within the package. 

2. Theoretical Model: Algorithms are categorized based on their theoretical 

models, such as frequent, correlated, and high utility patterns. 

3. Pattern Type: This level specifies the type of patterns discovered by the 

algorithms, including: 

• Basic: Patterns fitting the given theoretical model 

• Maximal Patterns: Patterns that are not subsets of any other patterns 

• Closed Patterns: Patterns where no superset has the same support count 

• Top-k Patterns: Patterns based on frequency, correlation, or periodicity 

criteria 

4. Mining Algorithms: The lowest level lists the specific mining algorithms used 

to extract patterns based on the previous categories. 

Figure 1.1a shows an abstract representation of the hierarchical arrangement, 

while Fig. 1.1b provides a concrete example of the organization within this frame-

work. Additionally, PAMI includes an “extras” sub-package with additional tools 

Fig. 1.1 Package structure of PAMI. (a) Abstract representation. (b)  An  example
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for generating synthetic databases, converting dataframes into various database 

formats, getting the statistical information of the databases, visualizing the results, 

and exporting the results in latex for publication purposes. 

1.3 Inputs and Outputs of a Mining Algorithm 

Figure 1.2 outlines the inputs and outputs of a mining algorithm in the PAMI 

package. Each algorithm requires data in a specific format and constraints. Data 

can be provided in three formats: a text file, a dataframe, or a URL for remote 

datasets. Outputs include the discovered patterns, which can be exported as a 

list, dataframe, or text file. Algorithms also report their runtime and memory 

consumption, measured as resident set size (RSS) and unique set size (USS). 

1.4 Maintaining the PAMI Package 

The PAMI package is designed for easy installation and maintenance using the “pip” 

command. Table 1.1 lists the basic commands required to manage the package, 

including installation, upgrading, uninstallation, and showing information. 

Fig. 1.2 Inputs and outputs of a mining algorithm 

Table 1.1 Basic pip 

commands to maintain PAMI 

package 

S. No. Purpose Command 

1 Installation pip install pami 

2 Upgradation pip install –upgrade pami 

3 Uninstall pip uninstall pami 

4 Information pip show pami
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1.5 Execution of Algorithms 

The algorithms in the PAMI package are executed on a terminal or integrated into 

their Python programs. We now explain these two processes briefly. 

1.5.1 Terminal Execution 

To run an algorithm from the terminal, navigate to the algorithm’s directory and 

execute the script with the necessary input and output files and any additional 

parameters. Below is the generic syntax and a detailed example of executing the 

renowned Apriori algorithm. 

Generic Code 1: Terminal Execution 

$ cd <pathToAlgorithm> 

$ python algorithm.py inputFile outputFile constraints 

Here: 

• <pathToAlgorithm> is the directory containing the algorithm s cript. 

• algorithm.py is the script to ex ecute. 

• inputFile is the file with input data. 

• outputFile is where the results will be sav ed. 

• constraints are additional parameters the algorithm r equires. 

Example 1: Apriori Execution 

$ cd PAMI/frequentPattern/basic 

$ python Apriori.py sampleDB.txt patterns.txt 10 

In the above example: 

1. Change Directory: $ cd PAMI/frequentPattern/basic sets the current 

directory. 

2. Execute Python Script: $ python Apriori.py sampleDB.txt patterns.txt 

10 runs the script with: 

• python: Invokes the Python interpreter. 

• Apriori.py: The script to execute.
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• sampleDB.txt: Input data file. 

• patterns.txt: Output file for storing the patterns. 

• 10: Minimum support in count. 

This method of running scripts is commonly used in various data processing tasks. 

Scripts typically take input files, process the data based on defined constraints or 

parameters, and produce output files containing the results. This approach ensures 

the workflow is organized and the results are systematically stored for further 

analysis or reporting. 

1.5.2 Importing an Algorithm 

Users can import the necessary PAMI modules into their Python programs for more 

advanced usage. This method not only enables the execution of algorithms but also 

allows for greater control over data preprocessing, post-processing, visualization, 

and the incorporation of additional logic or functionality. The generic Python code 

and an example4 to implement any mining algorithm from the PAMI package are 

shown below: 

Generic Code 2: Implementing a Pattern Mining Algorithm 

1 from PAMI.theoreticalModel.patternType import algorithm as alg 

2 # Initialization 

3 obj = alg.algorithm(inputFile, constraints, sep='\t') 

4 

5 # Mining the patterns 

6 obj.mine() 

7 

8 # Save the discovered patterns 

9 obj.save(outputFileName) 

10 

11 # Print the results 

12 print('Total number of patterns: ' + 

str(len(obj.getPatterns())))→֒ 

13 print('Runtime: ' + str(obj.getRuntime())) 

14 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

15 print('Memory (USS): ' + str (obj.getMemoryUSS()))

4 The file used in this experiment can be downloaded from the URL: https://web-ext.u-aizu.ac.jp/~ 

udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv. 

https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
https://web-ext.u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv
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Example 2: Implementing the Apriori Algorithm 

1 import PAMI.frequentPattern.basic.Apriori as alg 

2 

3 # Create an Apriori object 

4 obj = alg.Apriori(iFile = 'Transactional_T10I4D100K.csv', 

5 minSup = 500) 

6 # Run the mining process 

7 obj.mine() 

8 # Save the frequent patterns to an output file 

9 obj.save(oFile = 'patterns.txt') 

10 # Print the results 

11 print('Total number of patterns: ' + 

str(len(obj.getPatterns())))→֒ 

12 print('Runtime: ' + str(obj.getRuntime())) 

13 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

14 print( 'Memory (USS): ' + str (obj.getMemoryUSS())) 

1.6 Evaluating Multiple Pattern Mining Algorithm 

The “PAMI” package helps us evaluate the performance of multiple pattern mining 

algorithms on a dataset. The generic and the sample codes are provided below: 

Generic Code 3: Evaluating Multiple Algorithms 

1 #import the algorithms 

2 from PAMI.theoreticalModel.patternType import algorithm1 as 

alg1→֒ 

3 from PAMI.theoreticalModel.patternType import algorithm2 as 

alg2→֒ 

4 #you can import multiple algorithms 

5 import pandas as pd #to store results 

6 

7 #Create a list of threshold values 

8 constraintList = [100, 150,200] 

9 

10 #Create a dataframe to store results
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11 resultDF = pd.DataFrame(columns=['algorithm', 

'minSup','patterns', 'runtime', 'memoryRSS', 'memoryUSS'])→֒ 

12 

13 #implement each algorithm and store the results in a dataframe 

14 

15 for constraint in constraintList: 

16 obj = alg1.algorithm1(inputParameters) 

17 obj.mine() 

18 resultDF.loc[resultDF.shape[0]]=['algorithm1', 

constraint,len(obj.getPatterns()), obj.getRuntime(), 

obj.getMemoryRSS(), obj.getMemoryUSS()]

→֒

→֒ 

19 

20 for constraint in constraintList: 

21 obj = alg2.algorithm2(inputParameters) 

22 obj.mine() 

23 resultDF.loc[resultDF.shape[ 0]]=['algorithm2', 

constraint,len(obj.get patterns()), obj.getRuntime(), 

obj.getMemoryRSS(), obj.getMemoryUSS()]

→֒

→֒ 

24 

25 #repeat the above steps for the remaining algorithms 

Example 3: Evaluating Multiple Algorithms 

1 from PAMI.frequentPattern.basic import Apriori as alg1 

2 from PAMI.frequentPattern.basic import FPGrowth as alg2 

3 import pandas as pd 

4 

5 minimumSupportCountList = [1000, 1500, 2000, 2500, 3000] 

6 

7 resultDF = pd.DataFrame(columns=['algorithm', 

'minSup','patterns', 'runtime', 'memoryRSS', 'memoryUSS'])→֒ 

8 

9 

10 for minSupCount in minimumSupportCountList: 

11 obj = alg1.Apriori(iFile='Transactional_T10I4D100K.csv', 

minSup=minSupCount,sep='\t')→֒ 

12 obj.mine() 

13 resultDF.loc[resultDF.shape[0]]=['Apriori', 

minSupCount,len(obj.getPatterns()), obj.getRuntime(), 

obj.getMemoryRSS(), obj.getMemoryUSS()]

→֒

→֒ 

14 
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15 for minSupCount in minimumSupportCountList: 

16 obj = alg2.FPGrowth(iFile='Transactional_T10I4D100K.csv', 

minSup=minSupCount, sep='\t')→֒ 

17 obj.mine() 

18 resultDF.loc[resultDF.shape[0]]=['FPgrowth', 

minSupCount,len(obj.getPatterns()), 

obj.getRuntime(),obj.getMemoryRSS(), 

obj. getMemoryUSS()]

→֒

→֒

→֒ 

19 

20 resultDF #print dataframe 

1.7 Plotting the Results 

The generated results about the number of produced patterns, runtime, and memory 

can be visualized and exported as graphs using the PAMI library. The generic syntax 

and a sample code can be found below. 

Generic Code 4: Viewing the Results 

1 from PAMI.extras.graph import PlotLineGraphs4DataFrame as dif 

2 # Pass the result data frame to the class 

3 obj = dif.PlotLineGraphs4DataFrame(resultDF) 

4 # Plotting the graphs 

5 obj.plot(result=resultDF, xaxis='constraint', yaxis='patterns', 

label='algorithm')→֒ 

6 obj.plot(result=resultDF, xaxis='constraint', yaxis='runtime', 

label='algorithm')→֒ 

7 obj.plot(result=resultDF, xaxis='constraint', 

yaxis='memoryRSS', label='algorithm')→֒ 

8 obj.plot(result=resultDF, xaxis='constraint', 

yaxis='memoryUSS', label='algorithm')→֒ 

9 #saving the graphs' results 

10 obj.save(result=resultDF, xaxis='constraint', yaxis='patterns', 

label ='algorithm',oFile='patterns.jpg')→֒ 

11 obj.save(result=resultDF, xaxis='constraint', yaxis='runtime', 

label='algorithm',oFile='runtime.jpg')→֒ 
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12 obj.save(result=resultDF, xaxis='constraint', 

yaxis='memoryRSS', label='algorithm',oFile='memoryRSS.jpg')→֒ 

13 obj.save(result=resultDF, xaxis='constraint', 

yaxis='memoryUSS', label='algorithm',oFile= 'memoryUSS.jpg')→֒ 

Example 4: Viewing the Results 

1 from PAMI.extras.graph import PlotLineGraphs4DataFrame as dif 

2 # Pass the result data frame to the class 

3 obj = dif.PlotLineGraphs4DataFrame(resultDF) 

4 # Draw the graphs 

5 obj.plot(result=resultDF, xaxis='minSup', yaxis='patterns', 

label='algorithm')→֒ 

6 obj.plot(result=resultDF, xaxis='minSup', yaxis='runtime', 

label='algorithm')→֒ 

7 obj.plot(result=resultDF, xaxis='minSup', yaxis='memoryRSS', 

label='algorithm')→֒ 

8 obj.plot(result=resultDF, xaxis='minSup', yaxis='memoryUSS', 

label='algorithm')→֒ 

9 #saving the graphs' results 

10 obj.save(result=resultDF, xaxis='minSup', yaxis='patterns', 

label='algorithm',oFile='patterns.jpg')→֒ 

11 obj.save(result=resultDF, xaxis='minSup', yaxis='runtime', 

label='algorithm',oFile='runtime.jpg')→֒ 

12 obj.save(result=resultDF, xaxis='minSup', yaxis ='memoryRSS', 

label='algorithm',oFile='memoryRSS.jpg')→֒ 

13 obj.save(result=resultDF, xaxis='minSup', yaxis='memoryUSS', 

label='algorithm',oFile='memoryUSS.jpg ')→֒ 

1.8 Exporting the Results in Latex Format 

The “extras” package in the PAMI library contains a Python program that accepts 

the dataframe containing the results of various algorithms and outputs the latex code 

that the researchers can later use in their experimental section to draw plots. The 

generic Python code and an example to export the results in the Latex format are 

shown below:
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Generic Code 5: Exporting the Results in Latex 

1 from PAMI.extras.graph import Results2Latex as res 

2 #Initailize 

3 obj = res.Results2Latex() 

4 

5 #Printing the latex code 

6 obj.print(result=resultDF,xaxis='xLabel',yaxis='yLabel',\ 

7 label='algorithm') 

8 #Saving the latex code in a file 

9 obj.save(result=resultDF,xaxis ='xLabel',yaxis='yLabel',\ 

10 label='algorithm',oFile='outputFileName.txt') 

Example 5: Exporting the Results in Latex 

1 from PAMI.extras.graph import Results2Latex as res 

2 

3 obj = res.Results2Latex() 

4 #Printing the latex code on the terminal 

5 obj.print(result=resultDF, xaxis='minSup', 

yaxis='patterns',label='algorithm')→֒ 

6 obj.print(result=resultDF, xaxis='minSup', yaxis='runtime', 

label='algorithm')→֒ 

7 obj.print(result=resultDF, xaxis='minSup', 

yaxis='memoryRSS',label='algorithm')→֒ 

8 obj.print(result=resultDF, xaxis='minSup', yaxis='memoryUSS', 

label='algorithm')→֒ 

9 #save the latex code in a file 

10 obj.save(result=resultDF, xaxis='minSup', yaxis='patterns', 

label='algorithm', oFile='patterns.txt')→֒ 

11 obj.save(result=resultDF, xaxis='minSup', yaxis='runtime', 

label='algorithm', oFile='runtime.txt')→֒ 

12 obj.save(result=resultDF, xaxis='minSup', yaxis='memoryRSS ', 

label='algorithm', oFile='memoryRSS.txt')→֒ 

13 obj.save(result=resultDF, xaxis='minSup', yaxis='memoryUSS', 

label='algorithm', oFile='memoryUSS.txt')→֒ 
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1.9 Contributing 

We welcome contributions to the PAMI package. If you have suggestions, improve-

ments, or bug fixes, please mention them in the Discussions section of GitHub. Your 

contributions are crucial for enhancing the package and supporting the community. 

1.10 Support 

For support and troubleshooting, please check the Issues section of the GitHub 

repository. If you encounter any specific problems or need further assistance, contact 

the maintainers directly through the Discussion Forum. 

1.11 Conclusion 

The PAMI package has been designed and developed to empower users with 

robust tools for discovering and analyzing patterns in their data. Whether you are 

conducting market research, analyzing transactional data, or exploring new trends, 

this package provides the functionalities needed to perform these tasks efficiently. 

We encourage you to explore its features, utilize its capabilities, and integrate it into 

your data analysis workflows. 
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Chapter 2 

Handling Big Data: Classification, 
Storage, and Processing Techniques 

Abstract This chapter offers a comprehensive overview of big data, focusing 

on its classification, storage, and processing. The first section explores different 

categories of big data based on structure, veracity, attribute values, dimensionality, 

and storage. The second section examines popular data storage mechanisms, such 

as files and database management systems, and provides Python code for converting 

data between CSV and Parquet formats. The third section discusses data processing 

using Pandas DataFrames, highlighting their strengths and limitations. The chapter 

concludes with a summary, providing essential insights for managing and analyzing 

big data effectively. 

2.1 Basic Classifications of Big Data 

Many real-world applications naturally produce big data. This data is characterized 

by volume, velocity, and variety. The term “Big data” represents a wide range of 

diverse datasets generated by the combinations of various factors such as structure, 

veracity, an object’s values, dimensionality, and storage. Below, we briefly explain 

the fundamental forms of big data. 

2.1.1 Based on Data Structure 

1. Structured Data: Data organized in a fixed format, such as databases and 

spreadsheets. Examples include financial records and customer information. 

2. Unstructured Data: Data that lacks a predefined structure, such as text files, 

multimedia files, and social media content. 

3. Semi-structured Data: Data that does not conform to a fixed structure but 

contains tags to separate data elements. Examples include JSON and XML files. 

4. Graph Data: Data represented in the form of graphs, where entities are depicted 

as nodes (vertices), and the relationships between these entities are depicted as 

edges (links). 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
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2.1.2 Based on Veracity 

1. Certain Data: It is the data that is highly reliable, accurate, and complete. This 

data is typically collected from trusted sources with rigorous quality control 

measures, making it ideal for critical decision-making processes. 

2. Uncertain Data: It represents the data that may be incomplete, inconsistent, 

or subject to significant variability. Handling uncertain data requires advanced 

cleaning, validation, and analysis techniques to mitigate the risks associated with 

its use. 

2.1.3 Based on the Attribute’s Value 

1. Binary Data: Data in which attributes can take on one of two possible values, 

often represented as 0 and 1, but can also be true/false, yes/no, on/off. 

2. Nonbinary Data: Data in which attributes can take more than two values, 

including categorical, ordinal, interval, and ratio data. This is also known as 

multivalued or continuous data. 

2.1.4 Based on the Attribute’s Dimensionality 

1. Transactional Data: Data containing unordered transactions or itemsets1 

2. Temporal Data: Data containing transactions ordered by time 

3. Spatial Data: Data in which objects are associated with spatial information, such 

as pixels, points, lines, and polygons 

2.1.5 Based on Storage 

1. Databases: Static data that can be scanned multiple times 

2. Data Streams: Continuous data flows that can be scanned only once in real time 

Understanding these categories is crucial for users to identify the type of data 

they are working with and the patterns that can be discovered. Different data 

types and structures significantly impact the methods and algorithms for analysis 

and pattern mining. For instance, Fig. 2.1 shows that combining the “structured,” 

“certain,” “binary,” “transactional,” and “database” factors results in the generation 

of a “structured certain binary transactional database” (or simply, transactional 

database), while combining “structured,” “certain,” “binary,” “transactional,” and 

“stream” results in a “structured certain binary transactional stream” (or simply,

1 In pattern mining, a set of items is often written as itemset instead of item set. 



2.2 Approaches for Storing Big Data 19

Fig. 2.1 Representing the real-world data 

transactional stream). This understanding is crucial as pattern mining models and 

algorithms designed for handling a particular data type, say transactional databases, 

may suffer from correctness issues when applied to other data types, such as 

transactional streams. 

2.2 Approaches for Storing Big Data 

Big data is widely stored as files due to its simplicity in creation and sharing. Most 

public data is saved and shared in various file formats, such as Comma Separated 

Value (CSV), Joint Photographic Experts Group (JPEG), Tag Image File Format 

(TIFF), Network Common Data Form (NetCDF), Avro, Parquet, and Optimized 

Row Columnar (ORC). Despite their popularity, files suffer from data integrity, 

consistency, redundancy, and security issues. To tackle these problems, companies 

store their big data using database management systems (DBMS) such as relational 

databases (e.g., MySQL [1] and PostgreSQL [2]), NoSQL databases (e.g., Apache 

Cassandra [3] and MongoDB [4]), and newSQL databases (e.g., Google Spanner 

[5] and CockroachDB [6]). 

Due to the heterogeneity and the complexity of writing generic code for various 

DBMS, we confined the algorithms in PAMI to reading the input data as a text file 

for simplicity. Currently, the PAMI package provides scripts to convert a CSV file 

into a Parquet and vice versa. The generic code for file conversions is provided 

below. 

Generic Code 1: Converting a CSV File into a Parquet File 

1 from PAMI.extras.convert import CSV2Parquet as alg 

2 

3 obj = alg.CSV2Parquet(inputFile,outputFile,sep) 

4 obj.convert() 

5 

6 print('Runtime: ' + str(obj.getRuntime())) 

7 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

8 print('Memory (USS): ' + str(obj.getMemoryUSS())) 
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Example 1: CSV File to Parquet File 

import PAMI.extras.convert.CSV2Parquet as cp 

obj = cp.CSV2Parquet(inputFile='Transactional_T10I4D100K.csv',\ 

outputFile='Transactional_T10I4D100K.parquet',sep='\t') 

obj.convert() 

print('Runtime: ' + str(obj.getRuntime())) 

print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

print('Memory (USS): ' + str (obj.getMemoryUSS())) 

Generic Code 2: Converting a Parquet File into a CSV File 

1 from PAMI.extras.convert import Parquet2CSV as alg 

2 

3 obj = alg.Parquet2CSV(inputFile,outputFile,sep) 

4 obj.convert() 

5 

6 print('Runtime: ' + str(obj.getRuntime())) 

7 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

8 print('Memory (USS): ' + str (obj.getMemoryUSS())) 

Example 2: Parquet File to CSV 

1 import PAMI.extras.convert.Parquet2CSV as cp 

2 

3 obj = cp.Parquet2CSV(inputFile='Transactional_T10I4D100K. 

4 parquet',\ 

5 outputFile='new_Tran_T10I4D100K.csv',sep='\t') 

6 obj.convert() 

7 

8 print('Runtime: ' + str(obj.getRuntime())) 

9 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

10 print('Memory (USS): ' + str(obj.getMemoryUSS())) 
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Fig. 2.2 Elements of a dataframe 

2.3 Processing Big Data 

A DataFrame is a data structure that organizes data into a two-dimensional table 

(see Fig. 2.2) of rows and columns, much like a spreadsheet. It is one of the most 

common data structures used in modern data analytics because of its flexibility and 

intuitive way of storing and working with data. Popular libraries include Pandas 

DataFrame, Apache Spark DataFrame, Dask DataFrame, and Koalas. Pandas 

DataFrame is widely used due to its flexibility and powerful data structure for big 

data processing, particularly for data manipulation and analysis. However, Pandas 

has a limitation in handling large datasets that exceed memory capacity. Users can 

address this problem by employing Apache Spark DataFrame, which can handle 

larger-than-memory datasets by parallelizing operations and distributing data across 

multiple machines. 

Currently, the algorithms in PAMI support Pandas DataFrame and Spark 

DataFrame. In particular, the sequential algorithms in PAMI support Pandas 

DataFrame, while the distributed algorithms based on the map-reduce framework 

support Spark DataFrame. 

The PAMI package provides several scripts to convert a DataFrame into a specific 

database format. Below are the generic Python code and an example. 

Generic Code 3: Converting a Dataframe into a Particular Database 

1 from PAMI.extras.convert import DF2DB as alg 

2 import pandas as pd 

3 import numpy as np 

4 obj = alg.DF2DB(dataFrame) 

5 obj .convert2ParticularDatabase(outputFileName, other 

parameters)→֒ 

6 print('Runtime: ' + str(obj. getRuntime()))
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7 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

8 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

Example 3: Converting a Dataframe into a Transactional Database 

1 from PAMI.extras.convert import DF2DB as alg 

2 import pandas as pd 

3 import numpy as np 

4 data = np.random.randint(1, 100, size=(1000, 4)) 

5 dataFrame = pd.DataFrame(data, columns=['Item1', 'Item2', 

'Item3', 'Item4'])→֒ 

6 obj = alg.DF2DB(dataFrame) 

7 obj.convert2TransactionalDatabase(oFile='transactionalDB.csv', 

condition='>=', thresholdValue=36)→֒ 

8 print( 'Runtime: ' + str(obj.getRuntime())) 

9 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

10 print(' Memory (USS): ' + str (obj.getMemoryUSS())) 

2.4 Conclusion 

This chapter offers a detailed exploration of big data, from its classification 

and storage methods to its processing techniques. Understanding these aspects 

empowers the readers to select the right pattern mining model and an appropriate 

mining algorithm for knowledge discovery. 
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Chapter 3 

Transactional Databases: Representation, 
Creation, and Statistics 

Abstract This chapter delves into the concept and practicalities of transactional 

databases, which are crucial for managing and analyzing data across various 

fields. A transactional database consists of an unordered collection of transactions, 

each comprising a set of items represented in binary form. The chapter begins 

with a formal definition of transactional databases using set theory, explaining 

transactions and patterns. It then addresses practical aspects, including how these 

databases are stored and formatted on computing devices, with specific file creation 

and management guidelines. The chapter also covers methods for generating 

synthetic transactional databases for testing and benchmarking purposes, converting 

structured dataframes into transactional databases, and analyzing database statistics, 

including transaction length, item frequency, and sparsity. Overall, it provides a 

comprehensive overview of both theoretical and practical aspects of transactional 

databases, offering valuable data management and analysis insights. 

3.1 Introduction 

A structured certain binary transactional database, or simply a transactional 

database, is a collection of unordered transactions. Each transaction consists of 

items, often represented in binary form to indicate their presence or absence. This 

data format is prevalent in various real-world scenarios, such as sales, healthcare, 

clickstream, and sensor networks. Figure 3.1 visualizes how different factors 

combine to form a transactional database, highlighting the complex relationships 

involved. 

This chapter covers the following key aspects of transactional databases: 

1. Theoretical Representation: The formal definition of a transactional database 

using set theory 

2. Practical Representation: How computer systems implement and store transac-

tional databases 

3. Synthetic Database Creation: Techniques for generating synthetic transactional 

databases for testing and benchmarking 
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Fig. 3.1 Illustration of factors contributing to the creation of a transactional database 

4. Dataframe Conversion: Methods to convert structured dataframes into transac-

tional databases for broader data analysis applications 

5. Database Statistics: How to derive statistical details about a transactional 

database 

3.2 Theoretical Representation 

A transactional database [1] is a collection of transactions, each uniquely identified 

and containing a specific set of items. Formally: 

Let I = {item1, item2, . . . , itemn}., where n ≥ 1., represent the set of all possible 

items. An itemset, or pattern, is defined as Y = {item1, item2, . . . , itemk} ⊆ I ., 

where 1 ≤ k ≤ n.. This subset Y . represents a specific combination of items that can 

occur together in a transaction. A transaction is denoted as tran = {tid, Y }., where 

tid ∈ R
+

. is the transaction identifier, a unique number for each transaction. The tid. 

ensures distinct transaction identification. The set Y ⊆ I . includes the items present 

in this transaction. A transactional database, denoted as T DB ., is a collection of such 

transactions, formally defined as T DB = {tran1, tran2, . . . , tranm}., where m ≥ 1. 

represents the total number of transactions in the database. 

Example 3.1 Consider the set of items I = {Bread, Jam,Butter,Book,Pen}. 

available in a supermarket. Table 3.1a and b presents the horizontal and vertical 

formats of a transactional database, respectively. This database is based on the 

purchases made by five anonymous customers. For simplicity, the concepts will be 

explained using the horizontal format shown in Table 3.1a. 

In the first transaction, tran1 = {1 : Bread, Jam,Butter}., 1 represents the trans-

action identifier (or t id), and {Bread, Jam,Butter}. represent the items purchased 

in that transaction. This transaction indicates that a customer purchased the items 

“Bread,” “Jam,” and “Butter,” uniquely identified by transaction identifier 1. Similar 

statements can be made about the remaining transactions.
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Table 3.1 Hypothetical 

transactional database of a 

supermarket 

(a) Horizontal format 

tid Items 

1 Bread, Jam, Butter 

2 Bread, Book, Pen 

3 Jam, Butter 

4 Bread, Jam, Butter, Pen 

5 Book, Pen 

(b) Vertical format 

tid Bread Jam Butter Book Pen 

1 1 1 1 0 0 

2 1 0 0 1 1 

3 0 1 1 0 0 

4 1 1 1 0 1 

5 0 0 0 1 1 

3.3 Practical Representation 

A transactional database is usually stored as a file on a computer. To properly create 

and manage this file, follow these three rules: 

• One Transaction per Line: Each line in the file represents a single transaction. 

The line number implicitly acts as the transaction identifier (tid), so it is not 

explicitly stored in the file to save space and reduce processing costs. 

• Unique Items per Transaction: Each item should appear only once per line. 

The items can be listed in any order within the line. 

• Items Separated by a Delimiter: Items in a transaction are separated by a 

delimiter, such as a space or tab. The PAMI algorithms use a tab as the default 

delimiter, but users can choose other delimiters like commas or s paces. 

Overall, the format of a transaction in a transactional database is: 

. item1〈sep〉item2〈sep〉item3〈sep〉 · · ·

Example 3.2 If the delimiter is a tab, the transactional database shown in 

Table 3.1a would look like this: 

Bread Jam Butter 

Bread Book Pen 

Jam Butter 

Bread Jam Butter Pen 

Book Pen
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•> Important 

“Tab” is the default separator the PAMI package uses to distinguish the items within 

the line of a file. 

3.4 Creating Synthetic Transactional Databases 

The PAMI package offers a powerful and flexible tool for generating synthetic 

transactional databases, tailored to various needs. This capability is invaluable for 

testing and developing algorithms in data mining and related fields. Users can 

customize the database to suit their specific requirements, including the number 

of transactions, the total number of items, and the average transaction length. 

To illustrate the creation of a synthetic transactional database, consider the fol-

lowing sample code. This example generates a database with 100,000 transactions, 

each containing an average of 10 items from a set of 1,000 possible items: 

Program 1: Generating Synthetic Transactional Database 

1 from PAMI.extras.syntheticDataGenerator import 

TransactionalDatabase as db→֒ 

2 

3 obj = db.TransactionalDatabase( 

4 databaseSize=100000, 

5 avgItemsPerTransaction=10, 

6 numItems=1000, 

7 sep='\t' 

8 ) 

9 obj.create() 

10 obj.save('transactionalDatabase.csv') 

11 #read the generated transactions into a dataframe 

12 transactionalDataFrame=obj.getTransactions() 

13 #stats 

14 print('Runtime: ' + str (obj.getRuntime())) 

15 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

16 print('Memory (USS): ' + str(obj .getMemoryUSS())) 



3.6 Knowing the Statistical Details 29

3.5 Deriving a Transactional Database from a Dataframe 

The PAMI package enables users to convert a dataframe into a transactional 

database, which is ideal for transaction-based data analysis. Below is a Python code 

snippet illustrating how to use PAMI for this conversion: 

Program 2: Converting a Dataframe into a Transactional Database 

1 from PAMI.extras.convert import DF2DB as alg 

2 import pandas as pd 

3 import numpy as np 

4 

5 #creating a 1000 x 4 dataframe with random values 

6 data = np.random.randint(1, 100, size=(1000, 4)) 

7 dataFrame = pd.DataFrame(data, 

8 columns=['Item1', 'Item2', 'Item3', 'Item4'] 

9 ) 

10 #converting the database into a transactional database by 

11 #considering values greater than or equal to 36 

12 obj = alg.DF2DB(dataFrame) 

13 obj.convert2TransactionalDatabase(oFile='transactionalDB.csv', 

14 condition='>=', thresholdValue=36 

15 ) 

16 print('Runtime: ' + str(obj.getRuntime())) 

17 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

18 print('Memory (USS): ' + str (obj.getMemoryUSS())) 

3.6 Knowing the Statistical Details 

The dbStats sub-sub-package in the extras sub-package of PAMI provides users 

with statistical details about a transactional database. This functionality is essential 

for understanding the properties and characteristics of the database, which can be 

crucial for various data analysis tasks. The statistical details provided by dbStats 

include: 

1. Database size 

2. Total number of items in a database 

3. Minimum, average, and maximum lengths of the transactions 

4. Standard deviation of transactional sizes 

5. Variance in transaction sizes
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6. Sparsity 

7. Frequencies of the items 

8. Distribution of transactional lengths 

Here is an example of how to use the dbStats to obtain the statistics: 

Program 3: Deriving the Statistical Details 

1 from PAMI.extras.dbStats import TransactionalDatabase as stat 

2 

3 obj = stat.TransactionalDatabase("transactionalDatabase.csv") 

4 obj.run() 

5 obj.printStats() 

6 obj. plotGraphs() 

3.7 Conclusion 

This chapter has provided a comprehensive overview of transactional databases, 

from their theoretical underpinnings to practical applications. We began with a for-

mal definition of transactional databases, detailing how transactions are structured 

and identified using set theory. We then explored the practical aspects of how these 

databases are stored and managed on computing devices, including the rules for 

formatting and storing transactions. 

We discussed methods for generating synthetic transactional databases, which 

are crucial for testing and benchmarking various pattern mining algorithms. The 

chapter covered techniques for converting structured dataframes into transactional 

databases, broadening the data analysis scope. Finally, we examined how to 

derive and interpret statistical details of transactional databases to understand their 

properties better and optimize their usage. 

Understanding these concepts and techniques equips users with the tools to 

manage, analyze, and leverage transactional databases in various real-world applica-

tions. The combination of theoretical knowledge and practical skills discussed here 

lays the foundation for advanced data analysis.
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Chapter 4 

Pattern Discovery in Transactional 
Databases 

Abstract Useful patterns that can empower the users to achieve socioeconomic 

development lie hidden in the transactional databases. This chapter introduces 

various types of user interest-based patterns, such as frequent patterns, correlated 

patterns, fault-tolerant patterns, and association rules, that can be discovered from 

transactional databases. This chapter also provides sample Python code to find 

interesting patterns using the PAMI library. 

4.1 Introduction 

The previous chapter provided a comprehensive overview of transactional 

databases, covering their construction, practical representation, and methods for 

deriving statistical insights. This chapter focuses on the analytical dimension, which 

involves extracting and analyzing the valuable patterns within the transactional 

database. 

This chapter delves into several critical aspects of mining transactional 

databases: 

1. Frequent Pattern Discovery: We will formally define a frequent pattern [1], 

discuss the search space involved, explain the Apriori property, and outline the 

other algorithms for discovering these patterns. 

2. Handling Redundancy Problem in Frequent Patterns: This section addresses 

the redundancy problem by exploring techniques such as mining closed frequent 

patterns [3], identifying maximal frequent patterns [2], and selecting top-k 

frequent patterns [5]. 

3. Rare Item Problem: We will examine the challenges associated with mining 

frequent patterns containing rare items and discuss their implications. 

4. Solutions to the Problem: Various strategies to address the rare item problem 

will be explored, including mining frequent patterns with multiple minimum 

supports [4], discovering correlated patterns [6, 7], deriving relative frequent 

patterns [8], and identifying fault-tolerant patterns [9]. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 

U. K. Rage, Hands-on Pattern Mining, 

https://doi.org/10.1007/978-981-96-6791-8_4

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6791-8protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4
https://doi.org/10.1007/978-981-96-6791-8_4


34 4 Pattern Discovery in Transactional Databases

5. Association Rule Discovery: Finally, we will cover methods for finding associ-

ation rules from the discovered frequent patterns. 

Chapter 3 introduced the foundational concepts of transactional databases, 

including key terms such as “pattern,” “transaction,” and “transactional database.” 

We will continue using these terms consistently throughout this chapter to stream-

line the discussion and minimize redundancy. For readers who may have missed 

the previous chapter, we recommend reviewing at least Sect. 3.2 to familiarize 

themselves with the essential concepts and terminologies. 

•! Attention 
The fundamental concepts of transactional databases were described in Chap. 3. 

4.2 Frequent Patterns 

Frequent patterns are an important class of regularities that can be identified within 

transactional databases. They are foundational for discovering additional patterns 

that reflect user interests and behaviors. This section delves into frequent patterns 

in detail, emphasizing their basic model, search space, the Apriori property, and 

procedure for finding them using the PAMI library. Mastery of frequent patterns is 

essential for uncovering key relationships within the data and is the basis for more 

advanced pattern mining techniques. 

4.2.1 Basic Model 

Definition 4.1 (Support of a Pattern) Let P ⊆ I . be a pattern. The support of P . 

in a transactional database T DB . is defined as 

. sup(P ) =
freq(P )

|T DB|
,

where freq(P ). denotes the frequency of pattern P . in T DB ., and |T DB|. represents 

the total number of transactions in the database. 

Example 4.1 Let {Bread, Jam,Butter}. be a pattern. This pattern appears in two 

transactions of Table 3.1a. Hence, the f  requency  of this pattern is 2. The support 

of this pattern, i.e., sup({Bread, Jam,Butter}) =
2

5
= 0.4(= 40%).. It means 

40% of the customers have purchased the items “Bread,” “Jam,” and “Butter.”
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Definition 4.2 (Frequent Pattern) The pattern P is said to be a frequent pattern if 

sup(P ) ≥ minSup,.where minSup represents the user-specified minimum support . 

Example 4.2 If the user-specified minimum support is 30%, i.e., minSup = 30%,. 

then the pattern {Bread, Jam,Butter}. is considered as a frequent pattern because 

sup({Bread, Jam,Butter}) ≥ minSup.. 

In the pattern mining literature, the terms f  requency  and support are often 

used interchangeably for clarity and simplicity. In this book, we have chosen to 

consistently use the term support to refer to the f  requency  of a pattern. By doing 

so, we aim to streamline explanations and ensure consistency throughout the text, 

making it easier for readers to grasp the underlying concepts without confusion. 

•> Important 

This book uses the terms f  requency  and sup port interchangeably for brevity. 

Definition 4.3 (Problem Definition) Given a transactional database (T  DB) and 

the user-specified minimum support (minSup) value, discover all frequent patterns 

in T  DB  that have support greater than or equal to the user-specified mi nSup va lue.

4.2.2 Search Space 

The space of items in a transactional database raises an itemset lattice (see Fig. 4.1). 

This lattice represents the search space of pattern mining. Thus, the search space of 

frequent pattern mining (or any related pattern mining) is 2n −1,.where n represents 

the total number of items in a database. This vast search space makes pattern mining 

a nontrivial and challenging task. 

Example 4.3 The transactional database shown in Table 3.1 contains five items. 

The itemset lattice for these five items defines the search space for frequent pattern 

mining. Consequently, this database’s search space size for frequent pattern mining 

Fig. 4.1 The itemset lattice 

of a, b,  and  c items
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is 25 − 1 = 32 − 1 = 31.. In other words, a frequent pattern mining algorithm has 

to do a traversal among all 31 patterns to find the complete set of frequent patterns. 

4.2.3 The Apriori Property 

When encountering the problem of enormous search space, the researchers try to 

tackle it using the Apriori (or downward closure) property. This property states that 

“All non-empty subsets of a frequent pattern must also be frequent.” This property 

makes frequent pattern mining practical in real-world applications. 

Example 4.4 In Table 3.1, the sup({Bread, Book}) ≥ sup({Bread, Book, P en}).. 

If the user-specified minSup = 40%,. {Bread, Book}. is not a frequent pattern 

as sup({Bread, Book}) �≥ minSup .. Furthermore, {Bread, Book, P en}. cannot 

be a frequent pattern as sup({Bread, Book}) ≥ sup({Bread, Book, P en}) �≥

minSup .. Thus, we can stop searching all the supersets of {Bread, Book}. once we 

discovered that it is not a frequent pattern. 

•> Apriori Property 

If a pattern fails a test, its supersets also fail the test. 

4.2.4 Finding Frequent P atterns 

The literature describes several algorithms for finding frequent patterns, such 

as Apriori [1], ECLAT [10, 11], and FP-growth [12]. Although no universally 

acceptable best algorithm exists for finding frequent patterns in any transactional 

database, most researchers utilize FP-growth as it is generally faster than the other 

algorithms. Below is a sample Python script for finding frequent patterns using the 

FP-growth algorithm available in the PAMI package. 

Program 1: Frequent Pattern Discovery Using FP-Growth 

1 from PAMI.frequentPattern.basic import FPGrowth as alg 

2 

3 obj = alg.FPGrowth(iFile='Transactional_T10I4D100K.csv', 

minSup=300, sep='\t')→֒ 

4 obj.mine() 

5 obj. save('frequentPatternsAtMinSupCount300.txt') 

6 

7 frequentPatternsDF= obj.getPatternsAsDataFrame() 
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8 print('#Patterns: ' + str(len(frequentPatternsDF))) 

9 print('Runtime: ' + str(obj.getRuntime())) 

10 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

11 print('Memory (USS): ' + str (obj.getMemoryUSS())) 

4.2.5 Popular Variants of Frequent Patterns 

Since the objective of the basic frequent pattern model is to find all patterns that 

satisfy the user-specified minSup in a transactional database, it often generates too 

many patterns, most of which may be redundant or uninteresting depending on the 

user and application requirements. 

Example 4.5 The basic frequent pattern model not only finds {Bread, Jam,Butter}. 

as a frequent pattern in Table 3.1a, but also finds all of its non-empty 

subsets, i.e., {Bread}, {Jam}, {Butter}, {Bread, Jam}, {Bread, Butter},. and 

{Jam,Butter}., as frequent patterns. Due to redundancy, users may feel these 

non-empty subsets of {Bread, Jam,Butter}. uninteresting. 

Researchers tried to tackle this problem by finding “maximal frequent patterns,” 

“closed frequent patterns,” and “top-k frequent patterns.” We briefly study these 

patterns and look at the procedures to find them. 

4.2.5.1 Closed Frequent Patter ns 

A frequent pattern is a closed frequent pattern if none of its supersets have the same 

support as itself. Suppose FP  and CFP , respectively, represent the set of frequent 

patterns and closed frequent patterns generated from a transactional database at a 

given minSup value. In that case, their relation isCFP ⊆ FP . (or |CFP | ≤ |FP |.). 

In other words, closed frequent patterns are relatively fewer than the frequent 

patterns in a database. More importantly, the closed frequent patterns correspond 

to the lossless representation of frequent patterns, as the complete set of frequent 

patterns can be regenerated without losing any information from the closed frequent 

patterns. 

Example 4.6 Let us consider the following three frequent patterns in Table 3.1: 

{Bread, Jam}., {Jam,Butter}., and {Bread, Jam,Butter}.. The relation between 

these three patterns is: {Bread, Jam}. and {Jam,Butter}. are the subsets of 

{Bread, Jam,Butter}..  The  support of these patterns, i.e., sup({Bread, Jam}) =

2., sup({Jam,Butter}) = 3,. and sup({Bread, Jam,Butter}) = 2.. 

Since the support of {Bread, Jam}. is the same as that of its superset 

{Bread, Jam,Butter}., we can ignore the frequent pattern {Bread, Jam}. as 

it can be regenerated from its superset {Bread, Jam,Butter}. without loss of
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any information. We cannot say the same for the patterns {Jam,Butter}. and 

{Bread, Jam,Butter}. as both patterns have different support values. Thus, we 

consider {Jam,Butter}. and {Bread, Jam,Butter}. as closed frequent patterns. 

The procedure for finding closed frequent patterns in a database is shown below. 

Program 2: Finding Closed Frequent Patterns 

1 from PAMI.frequentPattern.closed import CHARM as alg 

2 

3 obj = alg.CHARM(iFile='Transactional_T10I4D100K.csv', 

minSup=300)→֒ 

4 obj.mine() 

5 obj.save('closedFrequentPatterns.txt') 

6 

7 print('#Patterns: ' + str(len(obj.getPatternsAsDataFrame()))) 

8 print('Runtime: ' + str(obj.getRuntime())) 

9 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

10 print('Memory (USS): ' + str(obj.getMemoryUSS())) 

•> Important 

Closed frequent patterns denote the lossless representation of frequent patterns. 

4.2.5.2 Maximal Frequent Pattern s 

A frequent pattern is a maximal frequent pattern if none of its supersets are frequent. 

If FP,CFP ., and MFP , respectively, represent the set of frequent patterns, closed 

frequent patterns, and maximal frequent patterns generated from a transactional 

database at a given minSup value, then the relation between them is MFP ⊆

CFP ⊆ FP . (or |MFP | ≤ |CFP | ≤ |FP |.). Unlike closed frequent patterns, 

maximal frequent patterns correspond to the lossy representation as we cannot 

derive the exact support information of all the frequent patterns. 

Example 4.7 Continuing the previous example, among the closed frequent patterns 

{Jam,Butter}. and {Bread, Jam,Butter}., only {Bread, Jam,Butter}. is con-

sidered as a maximal frequent pattern as none of its supersets represent frequent 

patterns. We can generate all of its subset frequent patterns from the maximal 

frequent pattern {Bread, Jam,Butter}.. However, we cannot determine their exact 

support . Henceforth, maximal frequent patterns represent the lossy representation 

of frequent patterns.
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•> Important 

Maximal frequent patterns denote the lossy representation of frequent patterns. 

The procedure for finding maximal frequent patterns in a transactional database 

is below . 

Program 3: Finding Maximal Frequent Patterns 

1 from PAMI.frequentPattern.maximal import MaxFPGrowth as alg 

2 

3 obj = alg.MaxFPGrowth(iFile='Transactional_T10I4D100K.csv', 

minSup=300)→֒ 

4 obj.mine() 

5 obj.save('maximalFrequentPatternsAtMinSupCount100.txt') 

6 

7 maximalFPsDF= obj.getPatternsAsDataFrame() 

8 

9 print('#Patterns: ' + str(len(obj.getPatternsAsDataFrame()))) 

10 print('Runtime: ' + str(obj.getRuntime())) 

11 print( 'Memory (RSS): ' + str(obj.getMemoryRSS())) 

12 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

4.2.5.3 Top-k Frequent Patter ns 

The main issue with the basic model of frequent pattern mining is determining the 

right minimum support value for a transactional database. To tackle this problem, 

researchers introduced top-k frequent pattern mining, where the mining algorithm 

focuses on finding top-k frequently occurring patterns without using the minSup 

value. The procedure for finding these patterns in a transactional database is below. 

Program 4: Finding Top-k Frequent Patterns 

1 from PAMI.frequentPattern.topk import FAE as alg 

2 

3 obj = alg.FAE(iFile='transactionalDatabase.csv',  k=1000) 

4 obj.mine() 

5 obj.save('topkFrequentPatterns.txt') 
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6 

7 print('#Patterns: ' + str(len(obj.getPatternsAsDataFrame()))) 

8 print('Runtime: ' + str(obj.getRuntime())) 

9 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

10 print('Memory (USS): ' + str (obj.getMemoryUSS())) 

4.3 The Rare Item Problem in Frequent Pattern Mining 

Since the basic frequent pattern model determines the interestingness of a pattern 

using only a single minSup value, it implicitly assumes that all items in the database 

have uniform support . However, this is seldom not the case as some items appear 

frequently, while others appear relatively infrequent (or rarely) in the database. If the 

support values of the items vary widely in the database, then the frequent pattern 

model suffers from the following tw o limitations: 

1. If we set a high minSup value, we miss the frequent patterns containing rare 

items as these items fail to satisfy the increased minSup v alue. 

2. We need to set a low minSup value to find the frequent patterns containing fre-

quent and rare items. However, setting a low minSup may cause a combinatorial 

explosion, producing too many patterns, most of which may be uninteresting to 

the user depending on the user or application requirements. 

This dilemma is known as the rare item problem. The example below illustrates 

this problem. 

Example 4.8 In a supermarket, customers frequently purchase cheap and perish-

able goods, such as bread and butter. These items are bought often and in large 

quantities. On the other hand, costly and durable goods, such as wine and whiskey, 

are purchased less frequently. While not bought as often, these items generate 

significant revenue when sold. Supermarket managers are often more interested 

in understanding the purchasing patterns of these rarely bought but high-revenue 

items. However, due to the rare item problem, it is challenging to discover patterns 

that include these rare items. If a high minSup value is used, patterns involving 

wine and whiskey are likely to be missed. If a low minSup value is used, the 

supermarket managers are overwhelmed with too many patterns, most of which a re 

useless. 

4.4 Solutions to the Rare Item Problem 

We now discuss some of the famous and widely used solutions presented by the 

researchers in the literature to tackle the rare item problem.
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4.4.1 Finding Frequent Patterns Using Multiple Minimum 

Supports 

In this approach, every item in the database is specified a minimum support-like 

constraint, known as minimum item support (MIS). Next, the minimum support 

of a pattern is defined as the minimum of its items’ MIS values. A pattern is 

considered frequent if its support is no less than its items’ lowest MIS value (s ee 

Definition 4.4). 

Definition 4.4 (Frequent Pattern) A pattern P is a frequent pattern if sup(P ) ≥

min(MIS(ij )|∀ij ∈ P),. where MIS(ij ). represents the minimum item support of 

an item ij ∈ P.. A popular approach to specifying the items’ MIS values is the 

percentage-based methodology, which is as follo ws: 

.MIS(ij ) = max(sup(ij ) × β,LS), (4.1) 

where β ∈ (0, 1). is a constant that captures the percentage value, and LS represents 

the least support a pattern can maintain in the database. The LS parameter removes 

highly infrequent (or noisy) items in the data. 

Example 4.9 Let the support values of the items “Bread,” “Butter,” “Wine,” 

and “Whiskey” in sales data be 1000, 500, 100, and 60, respectively. Let us 

set LS = 40., i.e., any pattern, irrespective of its (frequent or rare) items, 

must appear at least 40 times in the data. If β = 0.5., then MIS(Bread) =

max(0.5 × 1000, 40) = 500., MIS(Butter) = 250., MIS(Wine) = 50., and 

MIS(Whiskey) = 40 (= max(0.5 × 60, 40).. The pattern {Bread, Butter}. 

containing the frequently purchased items can be considered frequent if its support 

is no less than 250 (= min(500, 250)).. Similarly, the pattern {Wine,Whiskey}. 

containing the rarely purchased items can be considered frequent if its support is 

no less than 40 (= min(50, 40)).. Thus, depending upon its items, each pattern can 

satisfy a different minSup value in the multiple minimum support frequent pattern 

model. 

We now examine the procedures for specifying the items’ MIS values and 

finding frequent patterns using multiple minimum s upports. 

Program 5: Specifying MIS Values for the Items 

1 from PAMI.extras.calculateMISValues import usingBeta as ub 

2 cd = ub.usingBeta(iFile='Transactional_T10I4D100K.csv', 

beta=0.5,  LS=100) #using default tab separator →֒ 

3 cd.calculateMIS() 

4 cd.save('MIS.txt') 
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Program 6: Frequent Pattern Discovery 

1 from PAMI.multipleMinimumSupportBasedFrequentPattern.basic 

import CFPGrowthPlus as alg→֒ 

2 

3 obj = alg.CFPGrowthPlus(iFile='Transactional_T10I4D100K.csv', 

MIS='MIS.txt') #using default tab separator→֒ 

4 obj.mine() 

5 obj.save('frequentPatternsMultipleMinimumSupports.txt') 

6 print('Total No of patterns: ' + 

str(len(obj.getPatternsAsDataFrame())))→֒ 

7 print('Runtime: ' + str(obj. getRuntime())) 

8 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

9 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

4.4.2 Correlated Patterns 

A significant obstacle to the widespread adoption of frequent pattern mining in 

real-world applications is its failure to capture the genuine correlation relationship 

among data objects. Researchers have tried discovering correlated patterns using 

alternative measures of support to confront the obstacle. Although no universally 

accepted best measure exists to judge the interestingness of a pattern, all-confidence 

is emerging as a measure that can disclose genuine correlation relationships among 

data objects. We now define the model of correlated patterns using the all-confidence 

measure. 

Definition 4.5 (All-Confidence of a Pattern) The all-confidence of a pattern P , 

denoted as all-conf (P )., can be expressed as the ratio of its support to the maximum 

support of an item within it. That is, 

.all-conf (P ) =
sup(P )

max(sup(ij )|∀ij ∈ P)
. (4.2) 

Example 4.10 Consider the frequent pattern {Bread, Jam,Butter}. in Table 3.1a. 

The all-confidence of this pattern, i.e., 

.all-conf ({Bread, Jam,Butter}) =
sup({Bread, Jam,Butter})

max(sup(Bread), sup(Jam), sup(Butter))

=
2

max(3, 3, 3)

=
2

3

= 0.666 (= 66.6%).
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Definition 4.6 (Correlated Pattern) A frequent pattern P is a correlated pattern 

if its all-confidence value is greater than or equal to the user-specified minimum 

all-confidence (minAllConf ) value. In other words, P is a correlated pattern if 

sup(P ) ≥ minSup . and allConf (P ) ≥ minAllConf .. 

Example 4.11 If the user-specified minAllConf = 0.5 (= 50%),. the frequent 

pattern {Bread, Jam,Butter}. is said to be a correlated pattern because its all-

confidence value is greater than or equal to the user-specified minAllConf va lue. 

The search space for correlated pattern mining is the same as that for frequent 

patterns. The Python script to find the correlated patterns in a transactional database 

is shown below. 

Program 7: Finding Correlated Patterns 

1 from PAMI.correlatedPattern.basic import CoMine as alg 

2 

3 obj = alg.CoMine(iFile='Transactional_T10I4D100K.csv', 

minSup=300, minAllConf=0.5)→֒ 

4 obj.mine() 

5 obj.save('correlatedPatterns.txt') 

6 

7 print('#Patterns: ' + str(len(obj.getPatternsAsDataFrame()))) 

8 print('Runtime: ' + str(obj.getRuntime())) 

9 print(' Memory (RSS): ' + str(obj.getMemoryRSS())) 

10 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

4.4.3 Relative Frequent Patterns 

Relative frequent patterns are a special type of correlated patterns discovered using 

the relative support measure instead of the all-confidence measure. We now define 

the model of relative frequent patterns. 

Definition 4.7 (The Relative Support of a Pattern) The relative support of a 

pattern P , denoted as RS(P )., can expressed as the ratio of its support to the 

minimum support of its items. That is, 

.RS(P ) =
sup(P )

min(sup(ij )|∀ij ∈ P)
. (4.3) 

Example 4.12 Consider the frequent pattern {Bread, Jam,Butter}. in Table 3.1a. 

The relative support of this pattern, i.e.,
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. RS({Bread, Jam,Butter}) =
sup({Bread, Jam,Butter})

min(sup(Bread), sup(Jam), sup(Butter))

=
2

min(3, 3, 3)

=
2

3

= 0.666 (= 66.6%).

Definition 4.8 (Relative Frequent Pattern P ) A frequent pattern P is said to be a 

relative frequent pattern if RS(P ) ≥ minRS ., where minRS ∈ (0, 1). represents the 

user-specified minimum relative support value. 

Definition 4.9 If minRS = 60%,. then the frequent pattern {Bread, Jam, Butter} is 

a relative frequent pattern because RS({Bread, Jam,Butter}) ≥ minRS.. 

The Python script to find the relative frequent patterns in a database is provided 

below. 

Program 8: Finding Relative Frequent Patterns 

1 from PAMI.relativeFrequentPattern.basic import RSFPGrowth as 

alg→֒ 

2 

3 obj = alg.RSFPGrowth(iFile='Transactional_T10I4D100K.csv', 

minSup=300, minRS=0.6)→֒ 

4 

5 obj.mine() 

6 obj.save('relativeFrequentPatterns.txt') 

7 

8 relativeFrequentPatternsDF= obj.getPatternsAsDataFrame() 

9 print('#Patterns: ' + str(len(relativeFrequentPatternsDF))) 

10 print('Runtime: ' + str(obj.getRuntime())) #measure the runtime 

11 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

12 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

4.4.4 Fault-Tolerant Patterns 

In real-world data mining scenarios, especially in databases with noisy or incom-

plete data, it is crucial to find patterns that are robust to such imperfections. 

Fault-tolerant frequent patterns refer to patterns that remain valid even when some
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of the data items are missing, erroneous, or noisy. This concept is essential for 

ensuring that discovered patterns are reliable and valuable despite potential data 

quality issues. 

Fault-tolerant frequent itemsets extend traditional frequent itemset mining by 

incorporating tolerance to missing or incorrect items within transactions. This 

method modifies the support count mechanism to account for the presence of faults. 

In particular, a pattern is considered frequent if it appears in most transactions, even 

if some items within the transactions are missing or incorrect. 

Definition 4.10 (Fault-Tolerant Frequent Pattern) The length of pattern P , i.e., 

|P | > γ ., where γ > 0. represents the user-specified fault tolerance threshold value. 

A transaction T ran = (tid, Y ). is said to be FT-containing pattern P iff there e xists 

P ′ ⊆ P . such that P ′ ⊆ Y . and |P ′| ≥ (|P | − γ ).. The number of transactions in a 

database FT-containing pattern P is called the FP-support of P , denoted as ̂sup(P ).. 

The pattern P is said to be a fault-tolerant frequent pattern if it satisfies the following 

two conditions: 

1. ̂sup(P ) ≥ minSupFT  ,.whereminSupFT
. represents the user-specified minimum 

fault-tolerant support. 

2. For each item ij ∈ P,. sup(ij ) ≥ MIS(ij ).. 

Example 4.13 Consider the pattern {Bread, Jam,Butter}. in Table 3.1.  If  the  

user-specified fault tolerance threshold γ = 1., then {Bread, Jam,Butter}. 

can be considered as a candidate to be a fault-tolerant frequent pattern 

as |{Bread, Jam,Butter}| ≥ 1.. Any two (=3-1) items of the pattern 

{Bread, Jam,Butter}. appear in transactions whose t ids  are 1, 3, and 4. 

Thus, the FT-support of this pattern is 3. If the user -specified MIS(Bread) =

2,. MIS(Jam) = 2,. MIS(Butter) = 2., and minSupFT = 3,. then 

{Bread, Jam,Butter}. is a fault-tolerant frequent pattern as sup(Bread) ≥

MIS(Bread),. sup(Jam) ≥ MIS(Jam),. sup(Butter) ≥ MIS(Butter),. and 

sup({Bread, Jam,Butter}) ≥ minSupFT
.. 

The Python script to find the fault-tolerant frequent patterns in a database is 

provided below. 

Program 9: Finding Fault-Tolerant Frequent Patterns 

1 from PAMI.faultTolerantFrequentPattern.basic import FTFPGrowth 

as alg→֒ 

2 

3 obj = alg.FTFPGrowth(iFile='Transactional_T10I4D100K.csv', 

minSup=100, itemSup=100, minLength=3, faultTolerance=1, 

sep= "\t")

→֒

→֒ 

4 

5 obj.mine() 
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6 

7 print('#Patterns: ' + str(len(relativeFrequentPatternsDF))) 

8 print('Runtime: ' + str(obj.getRuntime())) #measure the runtime 

9 print('Memory (RSS): ' + str(obj .getMemoryRSS())) 

10 print('Memory (USS): ' + str(obj.getMemoryUSS())) 

4.5 Discovering Association Rules 

Association rule mining is a popular data mining technique for discovering interest-

ing relationships between the (frequent) patterns in the data. An association rule is 

of form A → B,. where A and B are patterns such that A ∩ B = ∅.. An association 

rule is interesting if its conf idence exceeds the threshold value of the user-specified 

minimum confidence (minConf ). The conf idence of an association rule A → B ., 

i.e., conf (A → B) =
sup(A ∪ B)

sup(B)
.. 

Example 4.14 Consider the frequent pattern {Bread, Jam,Butter}. in Table 3.1. 

An association rule that can be generated from this pattern is {Bread, Jam} →

{Butter}..  The  conf idence of this rule, i.e., conf ({Bread, Jam} → {Butter}) =
sup({Bread, Jam,Butter})

sup({Bread, Jam})
=

2

2
= 1 (= 100%).. If the user-specified 

minConf = 0.75 (= 75%),. then {Bread, Jam} → {Butter}. is said to be 

an interesting association rule mining. This rule says that 100% of the time, the 

customers purchase Butter  whenever they purchase Bread and Ja  m. 

The Python code to find interesting association rules from a set of frequent patterns 

is provided below. 

Program 10: Finding Interesting Association Rules 

1 from PAMI.AssociationRules.basic import confidence as alg 

2 

3 obj = alg.confidence('frequentPatterns.txt', minConf=0.75) 

4 obj.mine() 

5 obj.printResults() 

6 obj.save("associationRulesconfidence.csv") 
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4.6 Conclusion 

In this chapter, we discovered interesting patterns in transactional databases, focus-

ing on frequent patterns and its variants. Frequent patterns reveal user behaviors 

and preferences, forming the basis for practical data mining. We examined key 

algorithms such as Apriori, ECLAT, and FP-growth and their efficiency in handling 

large datasets. 

We also addressed the challenge of pattern overload by exploring variants like 

closed, maximal, and top-k frequent patterns. We discussed solutions to the rare item 

problem, such as multiple minimum supports, along with techniques for identifying 

correlated and relative frequent patterns. 

Finally, we covered fault tolerance in pattern mining, emphasizing the need 

for robust patterns in the presence of data imperfections. Overall, the discussed 

methods and algorithms offer a solid foundation for uncovering valuable insights 

from transactional data. 
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Chapter 5 

Temporal Databases: Representation, 

Creation, and Statistics 

Abstract This chapter provides a comprehensive overview of handling temporal 

databases using the PAMI package. Temporal databases, characterized by their 

time-ordered transactions, are essential for capturing and analyzing time-based data 

across domains such as sensor networks, satellite monitoring, and social media. 

We introduce the structure and representation of temporal databases, distinguishing 

between nonuniform and uniform types. The chapter covers practical aspects of 

working with these databases, including creating synthetic temporal databases 

for testing and converting dataframes into temporal databases. Additionally, we 

explore how to derive statistical details about temporal databases to understand their 

properties and facilitate data analysis. The techniques and tools discussed provide a 

solid foundation for managing, analyzing, and extracting insights from time-ordered 

transactional data. 

5.1 Introduction 

A structured certain binary temporal database, or simply a temporal database, 

is an organized collection of transactions ordered by time. Each transaction in 

this database is uniquely identified and timestamped, providing a chronological 

sequence of events or interactions. In particular, a transaction in a temporal database 

includes a transaction identifier, a relative timestamp,1 and a set of items, typically 

represented in binary form to indicate their presence or absence in the data. 

Temporal databases are prevalent in various real-world scenarios where time 

and sequence are essential. In sensor networks, each transaction might record the 

binary states of sensors at specific time intervals, capturing dynamic environmental 

changes. In satellite data, temporal databases can track the presence of certain phe-

nomena over time, enabling detailed temporal analysis of environmental changes. 

Social networks also utilize temporal databases to record user interactions and 

activities over time, helping to uncover trends and patterns in user behavior. 

1 The timestamp of the first transaction must always start with 1. 
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Fig. 5.1 Illustration of factors contributing to the creation of a temporal database 

Figure 5.1 illustrates the complex interconnections resulting in the generation 

of a temporal database. This visualization aids in understanding the intricate rela-

tionships and interactions that underpin the organization and analysis of temporal 

data. 

Temporal databases can be categorized into two types based on the interval 

occurrences of transactions: 

• Nonuniform Temporal Databases: Transactions occur irregularly, with varying 

time intervals between successive transactions. This type is common in unpre-

dictable scenarios or those dependent on external factors. 

• Uniform Temporal Databases [1–3]: Transactions occur at regular, fixed 

intervals. A transactional database is a specific type of uniform temporal database 

where transactions are recorded at uniform time steps. 

•> Important 

A transactional database typically represents a uniform temporal database. 

Since nonuniform temporal databases cover a broader range of scenarios, 

the techniques developed for them can generally be applied to uniform tempo-

ral databases. Therefore, this chapter focuses primarily on nonuniform temporal 

databases to discuss pattern mining techniques applicable to various temporal data 

types. The chapter cove rs: 

1. Theoretical Representation: The formal definition of a temporal database using 

set theory 

2. Practical Representation: How computer systems implement and store tempo-

ral databases 

3. Synthetic Database Creation: Methods for generating synthetic temporal 

databases for testing and benchmarking 

4. Dataframe Conversion: Techniques for converting structured dataframes into 

temporal databases for broader data analysis 

5. Database Statistics: Methods for deriving statistical details about a temporal 

database
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5.2 Theoretical Representation 

A temporal database consists of transactions ordered by time. Each transaction 

includes a transaction identifier (t id), a timestamp (ts), and a set of items. Formally: 

Let I = {item1, item2, . . . , itemn}., where n ≥ 1., represent the set of all possible 

items. An itemset, or pattern, is defined as Y = {item1, item2, . . . , itemk} ⊆ I ., 

where 1 ≤ k ≤ n.. This subset Y . represents a specific combination of items that 

can occur together in a transaction. A transaction is denoted as tran = {tid, ts, Y }., 

where tid ∈ R
+

. is the transaction identifier, a unique number for each transaction. 

The tid. ensures distinct transaction identification. The ts ≥ 1. represents the relative 

t imestamp  of a transaction. Multiple transactions can have the same timestamp. 

The set Y ⊆ I . includes the items present in this transaction. A temporal database, 

denoted as T empDB ., is a collection of such transactions, formally defined as 

T empDB = {tran1, tran2, . . . , tranm}., where m ≥ 1. represents the number of 

transactions. 

Example 5.1 Consider the set of items I = {Bread, Jam,Butter,Book,Pen}. 

available in a supermarket. Table 5.1a and b present the horizontal and vertical 

formats of a temporal database, respectively. This database is based on the irregular 

purchases made by five anonymous customers. For simplicity, the concepts will be 

explained using the horizontal format shown in Table 5.1a. 

In the first transaction, tran1 = {1 : 1 : Bread, Jam,Butter}., the number 1 

represents the transaction identifier (or t id), 1 is the relative timestamp (or ts), 

and {Bread, Jam,Butter}. represent the items purchased in that transaction. This 

transaction indicates that the first customer has purchased the items “Bread,” “Jam,” 

and “Butter” at the timestamp equal to 1. 

Note that multiple transactions can share the same timestamp, and missing 

timestamps are possible. This reflects the irregular nature of nonuniform temporal 

databases, where events do not occur at regular intervals. 

Table 5.1 Hypothetical temporal database of a supermarket 

(a) Horizontal format (b) Vertical format 

tid ts Items 

1 1 Bread, Jam, Butter 

2 3 Bread, Book, Pen 

3 3 Jam, Butter 

4 5 Bread, Jam, Butter, Pen 

5 8 Book, Pen 

tid ts  Bread Jam Butter Book Pen 

1 1 1 1 1 0 0 

2 3 1 0 0 1 1 

3 3 0 1 1 0 0 

4 5 1 1 1 0 1 

5 8 0 0 0 1 1 
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•> Key Properties of a Temporal Database 

• Multiple transactions can share a common timestamp. 

• Timestamps need not be continuous in the data. 

5.3 Practical Representation 

Temporal databases are typically stored as files. To ensure proper creation and 

management of these files, follow these rules: 

• One Transaction per Line: Each line represents a single transaction. The line 

number implicitly serves as the transaction identifier, so it is not explicitly stored 

in the file. Only the timestamp and items are recorded. 

• Relative Timestamp: Each transaction must have a relative timestamp, starting 

with 1. Convert absolute timestamps, such as “2024-01-01 00:00:00,” into 

relative timestamps if necessary. 

• Unique Items per Transaction: Items must appear only once per line and can 

be listed in any order. 

• Positioning of Timestamp and Items: Each transaction begins with a timestamp 

followed by items. Do not create transactions with only a timestamp and no items. 

• Delimiter Separation: Use a delimiter, such as a space or tab, to separate 

elements. The default delimiter in PAMI algorithms is the tab, but other 

delimiters like commas or spaces can also be used. 

The format of a transaction in a temporal database is 

. t imestamp〈sep〉item1〈sep〉item2〈sep〉item3〈sep〉 · · ·

Example 5.2 With a tab delimiter, the temporal database in Table 5.1 would look 

like this: 

1 Bread Jam Butter 

3 Bread Book Pen 

3 Jam Butter 

5 Bread Jam Butter Pen 

8 Book Pen

•! Attention 
Do not create a temporal database with transactions containing only timestamps.
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•> Important 

Tab is the default separator to distinguish the timestamp and items in a line. 

5.4 Creating Synthetic T emporal Databases 

The PAMI package provides a versatile approach for generating different types 

of synthetic temporal databases, which are essential for testing and developing 

algorithms in data mining. Users can customize various parameters, such as the 

number of transactions, the total number of items, average transaction length, 

probability of multiple transactions sharing the same timestamp, and the probability 

of skipping transactions at subsequent timestamps. 

The following code snippet demonstrates how to generate a synthetic temporal 

database with 100,000 transactions, each containing an average of 10 items from a 

set of 1,000 possible items: 

Program 1: Generating Synthetic Temporal Database 

1 from PAMI.extras.syntheticDataGenerator import TemporalDatabase 

as db→֒ 

2 

3 obj = db.TemporalDatabase(databaseSize=100000, 

avgItemsPerTransaction=10, numItems=1000, 

occurrenceProbabilityOfSameTimestamp=0, 

occurrenceProbabilityToSkipSubsequentTimestamp=0, sep='\t')

→֒

→֒

→֒ 

4 obj.create() 

5 obj.save('temporalDatabase.csv') 

6 #read the generated transactions into a dataframe 

7 temporalDataFrame=obj.getTransactions() 

8 #stats 

9 print('Runtime: ' + str (obj.getRuntime())) 

10 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

11 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

5.5 Deriving a Temporal Database from a Dataframe 

PAMI also allows converting a dataframe into a temporal database, which is ideal 

for transaction-based data analysis. Below is a Python code snippet showing how to 

perform this conversion:
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Program 2: Converting a Dataframe into a Temporal Database 

1 from PAMI.extras.convert import DF2DB as alg 

2 import pandas as pd 

3 import numpy as np 

4 

5 #creating a 5 x 5 dataframe with random values 

6 data = np.random.randint(1, 100, size=(5, 5)) 

7 dataFrame = pd.DataFrame(data, 

8 columns=['Item1', 'Item2', 'Item3', 'Item4', 

'Item5']→֒ 

9 ) 

10 # Adding a timestamp column with specific values 

11 timestamps = [1, 3, 3, 5, 8] 

12 dataFrame.insert(0, 'timestamp', timestamps) 

13 

14 #converting the database into a temporal database by 

15 #considering values greater than or equal to 36 

16 obj = alg.DF2DB(dataFrame) 

17 obj.convert2TemporalDatabase(oFile='temporalDB.csv', 

condition='>=', thresholdValue=36)→֒ 

18 print('Runtime: ' + str(obj.getRuntime())) 

19 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

20 print('Memory (USS): ' + str (obj.getMemoryUSS())) 

5.6 Knowing the Statistical Details 

The dbStats sub-package in PAMI’s extras module provides detailed statistical 

information about a temporal database. This functionality is crucial for under-

standing the properties and characteristics of the database. The statistical details 

include: 

1. Database size 

2. Total number of items in a database 

3. Minimum, average, and maximum lengths of the transactions 

4. Standard deviation of transactional sizes 

5. Variance in transaction sizes 

6. Sparsity 

7. Frequencies of the items 

8. Distribution of transactional lengths 

9. Minimum, average, and maximum inter-arrival time of the transactions
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10. Minimum, average, and maximum periodicity of the items 

Here is an example of how to use the dbStats to obtain these s tatistics: 

Program 3: Deriving the Statistical Details 

1 from PAMI.extras.dbStats import TemporalDatabase as stat 

2 

3 obj = stat.TemporalDatabase("temporalDatabase.csv") 

4 obj.run() 

5 obj.printStats() 

6 obj. plotGraphs() 

5.7 Conclusion 

This chapter explored the essential aspects of working with temporal databases 

using the PAMI package. We began by understanding the structure of temporal 

databases, which record transactions in a time-ordered manner and are used in real-

world applications like sensor networks, satellite data, and social networks. 

We discussed temporal databases’ theoretical and practical representations, high-

lighting the differences between nonuniform and uniform temporal databases and 

their respective uses. This chapter also covered the methods for creating synthetic 

temporal databases, demonstrating how to generate and customize databases for 

testing and algorithm development. 

Additionally, we illustrated how to convert a dataframe into a temporal database, 

providing a practical approach to data analysis. Lastly, we highlighted the impor-

tance of statistical details in understanding the properties of temporal databases, 

showing how to derive and interpret these statistics to analyze and utilize the data 

better. 
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Chapter 6 

Pattern Discovery in Temporal Databases 

Abstract Periodic-frequent pattern mining is a critical technique for analyzing 

temporal data to identify recurring trends and patterns. However, traditional models 

face significant challenges, such as the rare item problem, where uniform frequency 

and periodicity assumptions can lead to either the exclusion of patterns involving 

rare items or the generation of excessive, trivial patterns. Additionally, these models 

often fail to capture patterns with partial periodicity, limiting their applicability 

in real-world scenarios where periodic behavior may be intermittent. To address 

these issues, advancements such as periodic-correlated pattern mining have been 

developed, incorporating measures like all-confidence and periodic-all-confidence 

to balance the significance of frequent and rare items. Furthermore, partial periodic 

pattern discovery models relax strict periodicity constraints, allowing for identifying 

patterns with intermittent periodic behavior. These innovations enhance the ability 

to extract valuable insights from complex temporal datasets, improving decision-

making and strategic planning. 

6.1 Introduction 

In the preceding chapter, we discussed temporal databases’ construction, practical 

representation, and statistical analysis. Building on this foundation, this chapter 

focuses on the analytical aspects of temporal data, specifically extracting and 

examining meaningful patterns. One key area of interest is the identification of 

periodic-frequent patterns regularities that recur frequently at consistent intervals. 

These patterns are crucial for understanding data trends and behaviors over time. 

Periodic-frequent patterns can be categorized into two main types based on 

their occurrence behavior: perfect periodic-frequent patterns and partial periodic-

frequent patterns. A perfect periodic-frequent pattern appears with high frequency 

throughout the dataset and exhibits regular intervals consistently across the entire 

timeframe. In contrast, a partial periodic-frequent pattern occurs frequently but 

shows periodic behavior only during specific data segments. Due to real-world 

complexities and inherent noise, partial periodic-frequent patterns are often more 

insightful, offering a nuanced view of periodic behaviors that may not be uniform 
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throughout the dataset. This chapter focuses on perfect and partial periodic-frequent 

patterns, providing methods for users to choose the most suitable pattern mining 

technique based on their application requirements. 

This chapter delves into several critical areas of mining temporal databases to 

uncover these patterns: 

1. Periodic-Frequent Pattern Discovery: We will define a (perfect) periodic-

frequent pattern, explore the search space involved in identifying these patterns, 

discuss the Apriori property, and outline various algorithms for discovering such 

patterns. 

2. Handling Redundancy Problem in Periodic-Frequent Patterns: This section 

addresses the issue of redundancy in pattern mining. Techniques such as 

mining closed periodic-frequent patterns, identifying maximal periodic-frequent 

patterns, and selecting top-k periodic-frequent patterns will be discussed to 

streamline pattern discovery and reduce redundant findings. 

3. Rare Item Problem and Solutions: We will examine the challenges of mining 

infrequent or rare items within temporal data. Solutions and strategies for 

addressing the rare item problem will be presented to improve the comprehen-

siveness of pattern mining. 

4. Finding Partial Periodic Patterns: Different patterns exhibiting partial periodic 

behavior will be explored. This includes methods for discovering patterns that 

show periodic behavior only in specific periods, offering practical insights into 

the variability of periodic trends. 

6.2 Periodic-Frequent Patterns 

6.2.1 The Basic Model 

Chapter 5 introduced the foundational concepts of temporal databases, including 

key terms such as “pattern,” “transaction,” and “temporal database.” For clarity 

and consistency, we will use these terms throughout this chapter. We recommend 

reviewing Sect. 5.2 for readers unfamiliar with these concepts. 

Definition 6.1 (Temporal Occurrences of a Pattern) Let T  S  denote the set of all 

timestamps in T  empDB.  Let P ⊆ I . be a pattern. If P ⊆ Y .,  we  say  P occurs in Y 

(or Y contains P ). Let tsP
i ∈ T S ., i ≥ 1., denote the occurrence timestamp of pattern 

P in a transaction. Let T SP ⊆ T S . denote the set of all timestamps containing P in 

T  emp  DB. 

Example 6.1 Consider the pattern {Jam,Butter}. in Table 6.1. This pattern ini-

tially occurs in the first transaction, whose timestamp is 1. Thus, ts
{Jam,Butter}
1 = 1.. 

Similarly, ts
{Jam,Butter}
2 = 3. and ts

{Jam,Butter}
3 = 5.. The set of all timestamps 

containing the pattern {Jam,Butter}., i.e., T S{Jam,Butter} = {1, 3, 5}.. In other 

words, the items “Jam” and “Butter” were co-purchased by customers at timestamps 

1, 3, and 5.
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Table 6.1 Temporal 

database 
tid ts  Items 

1 1 Bread, Jam, Butter 

2 3 Bread, Book, Pen 

3 3 Jam, Butter 

4 5 Bread, Jam, Butter, Pen 

5 8 Butter, Book, Pen 

Definition 6.2 (Support of a Pattern) The support of a pattern P , denoted as 

sup(P )., is defined as |T SP |.. (Support can also be expressed as a percentage of 

the database size.) 

Example 6.2 The support of the pattern {Jam,Butter}. in Table 6.1 is given by 

sup({Jam,Butter}) = |T S{Jam,Butter}| = |{1, 3, 5}| = 3. or 60%(= 3×100
5

).. 

Definition 6.3 (Frequent Pattern) A pattern P is said to be frequent if sup(P ) ≥

minSup ., where minSup represents the user-specified minimum support v alue. 

Example 6.3 If the user-specified minSup = 2., then {Jam,Butter}. is a frequent 

pattern because sup({Jam,Butter}) ≥ minSup .. 

Definition 6.4 (Inter-Arrival Times of a Pattern) Let tsP
a . and tsP

b . (with a <

b.) represent two consecutive occurrences of the pattern P in T  empDB. An inter-

arrival time of P , denoted as iatPk ., is defined as tsP
b −tsP

a .. The set of all inter-arrival 

times of P is denoted as IAT P = {iatP1 , iatP2 , · · · , iatPx }., where x = |T SP | − 1.. 

Example 6.4 Consider the pattern {Jam,Butter}., which appears at timestamps 1, 

3, and 5. The first inter-arrival time for this pattern, i.e., iat
{Jam,Butter}
1 = 3−1 = 2.. 

Similarly, the second inter-arrival time of this pattern, i.e., iat
{Jam,Butter}
2 = 5−3 =

2.. The set of all inter-arrival times of {Jam,Butter}., i.e., IAT {Jam,Butter} = {2, 2}.. 

Definition 6.5 (Periodicity of a Pattern) Let tsini = 0. and tsf in = max(tsi |

∀tsi ∈ T S). be the initial and final timestamps of the database, respectively. The 

time consumed for the initial appearance of P in the temporal database T  emp  DB  

is iatPconsumed = (tsP
1 − tsini).. The time elapsed after the final appearance of P in 

T  empDB  is iatPelapsed = (tsf in − max(tsP
k | ∀tsP

k ∈ T SP ))..  The  periodicity of P 

in T  empDB, denoted as per(P )., is defined as max(iatPq | ∀{IAT P ∪iatPconsumed ∪

iatPelapsed}).. 

Example 6.5 For the temporal database shown in Table 6.1, the initial and final 

timestamps are 0 and 8, respectively. Thus, tsini = 0. and tsf in = 8.. The time 

taken for the initial occurrence of the pattern {Jam,Butter}. is iat
{Jam,Butter}
consumed =

(ts
{Jam,Butter}
1 − tsini) = 1 − 0 = 1.. The time elapsed after the final occurrence 

of {Jam,Butter}. is iat
{Jam,Butter}
elapsed = (tsf in − max(T S{Jam,Butter})) =

8 − 5 = 3..  The  periodicity of {Jam,Butter}. is per({Jam,Butter}) =

max(IAT {Jam,Butter} ∪ iat
{Jam,Butter}
consumed ∪ iat

{Jam,Butter}
elapsed ) = max(2, 2, 1, 3) = 3..
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Definition 6.6 (Periodic-Frequent Pattern) A frequent pattern P is considered 

a periodic-frequent pattern if per(P ) ≤ maxP rd ., where maxP rd is the user-

specified maximum periodicity threshold v alue. 

Example 6.6 If the user-specified maxP rd = 3., the frequent pattern 

{Jam,Butter}. is a periodic-frequent pattern because per({Jam,Butter}) ≤

maxP rd .. 

Definition 6.7 (Problem Definition) Given a temporal database (T  empDB) and 

the user-specified minimum support (minSup) and maximum periodicity (maxP rd) 

values, the problem is to discover all periodic-frequent patterns in T  DB  that have 

support no less than minSup and periodicity no more than maxP rd. 

Note The inter-arrival times and periodicity of a pattern can also be expressed as 

percentages of tsf in .. However, the periodicity is expressed in counts throughout this 

book for brevity. 

6.2.2 Search Space and Apriori Property 

In periodic-frequent pattern mining, the goal is to identify frequent patterns in a 

dataset that follow a regular, repeating interval. To achieve this, it is necessary to 

search through many potential patterns. The search space and the Apriori property 

are crucial concepts in managing this process. 

6.2.2.1 Search Space 

1. Itemset Lattice: The itemset lattice represents the search space for periodic-

frequent pattern mining. An itemset lattice includes all possible combinations of 

items from the dataset. For a database with |I |. items, the itemset lattice contains 

all possible itemsets of size one up to size |I |.. 

2. Size of Search Space: The total number of possible itemsets is 2|I | − 1..  This  

is because each item can either be included in a pattern or not, leading to 2|I |
. 

possible combinations. We subtract 1 to exclude the empty set. For instance, if 

there are five items in the database, there are 25 − 1 = 31. possible non-empty 

itemsets. (See Chap. 4 for more information.) 

3. Challenge: Directly searching through all these itemsets is computationally 

infeasible, especially as the number of items increases. The number of potential 

patterns grows exponentially with the number of items, necessitating strategies 

to efficiently reduce the search space. 

6.2.2.2 Apriori Property 

1. Definition: The Apriori property is a fundamental principle used to reduce the 

search space in frequent pattern mining. It states that “all non-empty subsets of a 

periodic-frequent pattern must also be periodic-frequent patterns.”
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2. Implication: If a pattern is identified as a periodic-frequent pattern, then every 

subset of this pattern must also be periodic frequent. For example, if the pattern 

{A,B,C}. is found to be periodic frequent, then the patterns {A,B}., {A,C}., and 

{B,C}.must also be periodic frequent. 

3. Utility: We can significantly reduce the number of candidate patterns to evaluate 

by applying this property. Instead of checking all possible patterns, we focus only 

on supersets of known periodic-frequent patterns. This reduction in the search 

space is because if a large itemset is periodic frequent, all of its smaller subsets 

must be periodic frequent. Conversely, if a subset is not periodic frequent, any 

larger itemset containing it cannot be periodic frequent either. 

4. Example: Suppose we are searching for patterns in a dataset of five items and 

have identified that {A,B,C}. as a periodic-frequent pattern. According to the 

Apriori property, any sub-pattern that includes {A,B,C}., such as {A,B,C}., 

must also be periodic frequent if it meets the support and periodicity criteria. 

This allows us to avoid evaluating larger itemsets that do not contain periodic-

frequent subsets, focusing our efforts on more promising candidates. 

In summary, the Apriori property is a critical tool for efficiently mining periodic-

frequent patterns. By leveraging this property, we can reduce the vast search space 

and make identifying meaningful patterns more manageable. 

6.2.3 Finding Periodic-Frequent Patterns 

Several algorithms have been proposed in the literature for finding periodic-frequent 

patterns, including PFP-growth [1], PFP-growth++ [2], and PF-ECLAT [3]. While 

there is no universally accepted best algorithm for finding periodic-frequent patterns 

across all temporal databases, the PFP-growth++ algorithm is often preferred due to 

its generally faster performance than other algorithms. Below is an example Python 

script demonstrating how to find periodic-frequent patterns using the PFP-growth++ 

algorithm, which is available in the PAMI package. 

Program 1: Finding Periodic-Frequent Patterns 

1 from PAMI.periodicFrequentPattern.basic import PFPGrowthPlus as 

alg # Import the algorithm→֒ 

2 

3 obj = alg.PFPGrowthPlus(iFile='Temporal_T10I4D100K.csv', 

minSup=100, maxPer='2000', sep='\t') # Initialize→֒ 

4 obj.mine() 

5 obj.save('periodicFrequentPatterns.txt') 

6 

7 patternsDF = obj. getPatternsAsDataFrame()
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8 print('Patterns: ' + str(len(patternsDF))) 

9 print('Runtime: ' + str(obj.getRuntime())) 

10 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

11 print('Memory (USS): ' + str (obj.getMemoryUSS())) 

6.3 Popular Variants of Periodic-Frequent Patterns 

The primary goal of the basic periodic-frequent pattern model is to identify all 

patterns that meet the user-specified minSup and maxPrd criteria in a temporal 

database. However, this approach can generate many patterns, which may be 

redundant or of limited interest depending on the user’s requirements or specific 

application needs. 

Example 6.7 The basic periodic-frequent pattern model not only identifies 

{Jam,Butter}. as a periodic-frequent pattern in Table 3.1a but also considers all 

of its non-empty subsets, i.e., {Jam}. and {Butter}., as periodic-frequent patterns. 

Due to this redundancy, users might find these subsets, {Jam}. and {Butter}.,  less  

attractiv e. 

To address this issue, researchers have developed methods to find closed 

periodic-frequent patterns [4], maximal periodic-frequent patterns [5], and top-k 

rperiodic-frequent patterns [6]. This section will briefly explore these variants and 

discuss the methods for identifying them. 

6.3.1 Closed Periodic-Frequent Patterns 

A periodic-frequent pattern is considered a closed periodic-frequent pattern if none 

of its supersets share the same support and periodicity. Let PFP  and CPFP denote 

the sets of periodic-frequent and closed periodic-frequent patterns, respectively, 

generated from a temporal database with given values of minSup and maxP rd. 

The relationship between these sets isCPFP ⊆ PFP . (or equivalently, |CPFP | ≤

|PFP |.). In other words, closed periodic-frequent patterns are smaller in number 

than periodic-frequent patterns. More importantly, closed periodic-frequent patterns 

provide a lossless representation of periodic-frequent patterns, meaning that the 

complete set of periodic-frequent patterns can be reconstructed from the closed 

periodic-frequent patterns without losing any information. 

Example 6.8 Consider the following periodic-frequent patterns in Table 6.1: 

{Jam}., {Butter}., and {Jam,Butter}.. The relationships among these patterns 

are as follows: {Jam}. and {Butter}. are subsets of {Jam,Butter}.. The support 

values for these patterns are: sup({Jam}) = 3., sup({Butter}) = 4., and 

sup({Jam,Butter}) = 3.. The periodicity values are: per({Jam}) = 3.,
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per({Butter}) = 3., and per({Jam,Butter}) = 3.. Since the support and 

periodicity of {Jam}. are the same as those of its superset {Jam,Butter}., {Jam}. 

can be disregarded as it is redundant and can be derived from {Jam,Butter}. 

without any loss of information. However, {Butter}. and {Jam,Butter}. have 

different support values, so {Butter}. cannot be derived from {Jam,Butter}. 

without loss of information. Therefore, {Butter}.and {Jam,Butter}.are considered 

closed periodic-frequent patterns. 

The procedure for finding closed periodic-frequent patterns in a temporal 

database is outlined below: 

Program 2: Finding Closed Periodic-Frequent Patterns 

1 from PAMI.periodicFrequentPattern.closed import CPFPMiner as 

alg→֒ 

2 

3 obj = alg.CPFPMiner(iFile='Temporal_T10I4D100K.csv', 

minSup=100, maxPer=2000, sep='\t')→֒ 

4 

5 obj.mine() 

6 obj.save('closedPeriodicFrequentPatterns.txt') 

7 

8 patternsDF = obj.getPatternsAsDataFrame() 

9 print('Patterns: ' + str(len(patternsDF))) 

10 print('Runtime: ' + str(obj.getRuntime())) 

11 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

12 print('Memory (USS): ' + str(obj.getMemoryUSS())) 

•> Important 

Closed periodic-frequent patterns represent a lossless subset of periodic-frequent 

patterns. 

6.3.2 Maximal Periodic-Frequent P atterns 

A periodic-frequent pattern is considered a maximal periodic-frequent pattern 

if none of its supersets are periodic-frequent. Let PFP , CPFP , and MPFP 

denote the sets of periodic-frequent patterns, closed periodic-frequent patterns, 

and maximal periodic-frequent patterns, respectively, generated from a temporal
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database with given values of minSup and maxP rd. The relationship among 

these sets is given by MPFP ⊆ CPFP ⊆ PFP . (or equivalently, |MPFP | ≤

|CPFP | ≤ |PFP |.). Unlike closed periodic-frequent patterns, maximal periodic-

frequent patterns offer a lossy representation because they do not retain the exact 

support and periodicity information of all the periodic-frequent patterns. 

Example 6.9 Considering the previous example, consider the closed periodic-

frequent patterns {Butter}. and {Jam,Butter}.. Among these, {Jam,Butter}. is 

a maximal periodic-frequent pattern because none of its supersets are periodic 

frequent. Although we can derive all of its subset periodic-frequent patterns from 

{Jam,Butter}., the exact support and periodicity values for these subsets 

are not determinable. Thus, maximal periodic-frequent patterns represent a lossy 

approximation of the complete set of frequent patterns. 

•> Important 

Maximal periodic-frequent patterns represent a lossy subset of the frequent patterns. 

The procedure for finding maximal periodic-frequent patterns in a temporal 

database is outlined below : 

Program 3: Finding Maximal Periodic-Frequent Patterns 

1 from PAMI.periodicFrequentPattern.maximal import MaxPFGrowth 

as alg→֒ 

2 

3 obj = alg.MaxPFGrowth(iFile='Temporal_T10I4D100K.csv', 

minSup=100, maxPer=2000, sep='\t')→֒ 

4 

5 obj.mine() 

6 obj.save('maximalPeriodicFrequentPatterns.txt') 

7 

8 patternsDF = obj.getPatternsAsDataFrame() 

9 print('Patterns: ' + str(len(patternsDF))) 

10 print('Runtime: ' + str(obj.getRuntime())) 

11 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

12 print('Memory (USS): ' + str(obj. getMemoryUSS()))
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6.3.3 Top-k Periodic-Frequent P atterns 

A common challenge with traditional periodic-frequent pattern mining is deter-

mining the appropriate minimum support and maximum periodicity values for a 

given temporal database. To address this challenge, researchers have developed 

the concept of top-k periodic-frequent pattern mining. This approach focuses on 

identifying the top-k patterns that exhibit the lowest periodicity in the dataset, 

regardless of their support values. This method is beneficial when the goal is to 

discover the most significant patterns based on periodicity rather than predefined 

thresholds. 

The following Python script demonstrates how to find the top-k periodic-frequent 

patterns using the PAMI package: 

Program 4: Finding Top-k Periodic-Frequent Pattern s 

1 from PAMI.periodicFrequentPattern.topk.kPFPMiner import 

kPFPMiner as alg→֒ 

2 

3 obj = alg.kPFPMiner(iFile='Temporal_T10I4D100K.csv',  k=1000, 

sep='\t')→֒ 

4 obj.mine() 

5 

6 obj.save('topkPeriodicFrequentPatterns.txt') 

7 

8 kPatternsDF = obj.getPatternsAsDataFrame() 

9 print('#Patterns: ' + str(len(kPatternsDF))) 

10 print('Runtime: ' + str(obj.getRuntime())) 

11 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

12 print('Memory (USS): ' + str(obj.getMemoryUSS())) 

6.4 Main Issues of Periodic-Frequent Pattern Mining 

The basic model of periodic-frequent pattern mining faces two significant chal-

lenges: 

1. The Rare Item Problem: The basic model of periodic-frequent patterns relies 

on a single minSup and maxP rd to assess the interestingness of patterns across 

the entire dataset. This approach implicitly assumes that all items have uniform 

frequencies or similar temporal occurrence behaviors, which is rarely true in 

real-world applications. In many scenarios, some items appear frequently, while
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others occur infrequently. This variation in occurrence behavior leads to two 

potential problems: 

• Setting a high minSup or a low maxP rd value may result in missing 

periodic-frequent patterns that contain rare items, as these items often do not 

meet the s pecified constraints. 

• To capture patterns involving frequent and rare items, one might need to set a 

low minSup and a high maxP rd. However, this can lead to a combinatorial 

explosion, generating an overwhelming number of patterns, many of which 

may be uninteresting or irrelevant to the user or application. 

This dilemma is commonly referred to as the “rare item problem.” 

2. Inability to Find Partially Periodically Occurring Patterns: The basic 

periodic-frequent pattern model enforces a strict requirement that all inter-

arrival times of a pattern must be within the user-specified maxP rd threshold. 

This rigid criterion can cause the model to overlook interesting patterns that 

exhibit partial periodic behavior in the data, thereby missing potentially valuable 

insights. 

In the following sections, we will explore various approaches described in the 

literature to address these two issues. 

6.5 Addressing the Rare Item Problem 

The rare item problem, a significant challenge in periodic-frequent pattern mining, 

arises due to the inherent assumption that all items in a dataset exhibit similar 

frequencies and temporal behaviors. This assumption is often violated in real-world 

datasets, where some items appear frequently, while others occur only sporadically. 

To address this problem, researchers have introduced the concept of periodic-

correlated pattern mining. This approach extends the basic periodic-frequent pattern 

model by incorporating additional constraints that account for both the frequency 

and the correlation of items within a pattern, allowing for the identification of 

patterns involving rare items without overwhelming the user with trivial results. 

6.5.1 Periodic-Correlated Pattern Mining 

Periodic-correlated pattern mining [7] utilises the concept of correlation between 

items within a pattern, alongside the traditional support and periodicity constraints. 

This method ensures that patterns containing rare items are not overlooked due to the 

global application of a single minimum support and maximum periodicity threshold 

values on the entire dataset. In particular, this model does so by incorporating an all-

confidence measure, which balances the influence of frequent and rare items within 

the same pattern. 

Definition 6.8 (Periodic-Correlated Pattern) A pattern P is considered a 

periodic-correlated pattern if it satisfies the following constraints:
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.sup(P ) ≥ minSup. (6.1) 

allConf (P ) ≥ minAllConf . (6.2) 

per(P ) ≤ maxP er. (6.3) 

PC(P )  ≤ maxPeriodicAllConf. (6.4) 

Here, the different terms are defined as follows: 

• sup(P ).: The support of the pattern P , which must be greater than or equal to a 

user-specified minimum support threshold, minSup. 

• allConf (P ).: The all-confidence measure, defined as: 

. allConf (P ) =
sup(P )

max(sup(ij ) | ∀ij ∈ P)
,

which must be greater than or equal to a minimum all-confidence threshold, 

minAllConf . This measure accounts for the balance between the frequent and 

rare items within the pattern. 

• per(P ).: The periodicity of the pattern P , which must be less than or equal to a 

user-specified maximum periodicity threshold, maxPer . 

• PC(P ).: The periodic-all-confidence measure, defined as: 

. PC(P ) =
| ÎAT P |

min(sup(ij ) | ∀ij ∈ P)
− 1,

which must be less than or equal to a maximum periodic-all-confidence thresh-

old, maxPeriodicAllConf . Here, ÎAT P ⊆ IAT P
. represents the set of 

inter-arrival times that are less than a user-specified maximum inter-arrival time. 

The constraints on the all-confidence measure and the periodic-all-confidence 

measure ensure that the pattern is not only frequent and periodic but also that it 

reflects a meaningful correlation between its constituent items. This approach allows 

for the inclusion of patterns that involve rare items without being overwhelmed by 

trivial or irrelevant patterns. 

6.5.2 Implementation Example: Finding Periodic-Correlated 

Patterns 

The following Python code illustrates how periodic-correlated patterns can be 

identified within a temporal database. It uses the PAMI package to find such 

patterns. This example employs the EPCPGrowth algorithm, which is designed to 

mine periodic-correlated patterns by considering both the frequency and periodicity 

of items and their correlation.
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Program 5: Finding Periodic-Correlated Patterns 

1 from PAMI.periodicCorrelatedPattern.basic import EPCPGrowth as 

alg→֒ 

2 

3 # Initialize the EPCPGrowth algorithm with the appropriate 

parameters→֒ 

4 obj = alg.EPCPGrowth( 

5 iFile='Temporal_T10I4D100K.csv', 

6 minSup=100, 

7 minAllConf=0.7, 

8 maxPer=2000, 

9 maxPerAllConf=1.5, 

10 sep='\t') 

11 

12 # Mine the periodic-correlated patterns 

13 obj.mine() 

14 

15 # Save the patterns to a file 

16 obj.save('correlatedPeriodicFrequentPatterns.txt') 

17 

18 # Retrieve the patterns as a DataFrame 

19 correlatedPFPs = obj.getPatternsAsDataFrame() 

20 

21 # Display summary information 

22 print('#Patterns: ' + str(len(correlatedPFPs))) 

23 print('Runtime: ' + str(obj.getRuntime())) 

24 print('Memory (RSS): ' + str(obj. getMemoryRSS())) 

25 print('Memory (USS): ' + str (obj.getMemoryUSS())) 

6.6 Finding Partial Periodic Patterns 

In many real-world applications, certain patterns may not exhibit consistent periodic 

behavior throughout a temporal database. Instead, these patterns might show 

periodicity only during certain intervals or under specific conditions. To identify 

such patterns, researchers have developed various models for mining partial periodic 

patterns. This section explores three prominent models for discovering interesting 

patterns that exhibit partial periodic behavior.
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6.6.1 Partial Periodic-Frequent Patterns 

Partial periodic-frequent patterns [8] are a generalization of periodic-frequent 

patterns. They relax the strict requirement that a pattern must consistently occur 

within a specified period throughout the entire database. Instead, they allow patterns 

to be identified as periodic frequent even if they only exhibit periodic behavior for 

a portion of the time. 

Definition 6.9 (Periodic Ratio of a Pattern) The periodic ratio of a pattern P , 

denoted as PR(P )., quantifies the proportion of P ’s occurrences in the database that 

are periodic. It is defined as follows: 

.PR(P ) =
|ÎAT P |

sup(P ) − 1
, (6.5) 

where sup(P ). is the support of pattern P , and |ÎAT P |. is the number of inter-arrival 

times within the user-specified maximum periodicity threshold. 

Definition 6.10 (Partial Periodic-Frequent Pattern) A pattern P is considered a 

partial periodic-frequent pattern if it satisfies the following conditions: 

.sup(P ) ≥ minSup. (6.6) 

per(P ) ≤ maxP er. (6.7) 

PR(P )  ≥ minPR, (6.8) 

where minSup is the minimum support threshold, maxPer is the maximum 

periodicity threshold, and minPR ∈ (0, 1). is the user-specified minimum periodic 

ratio. The minimum periodic ratio ensures that a pattern is considered interesting 

only if it maintains a certain level of periodic occurrences in the database. 

To find all partial periodic-frequent patterns in a temporal database, you can use 

the following Python code. This code utilizes the GPFgrowth algorithm from the 

PAMI package to mine patterns that meet the specified support, periodicity, and 

periodic ratio constraints. 

Program 6: Finding Partial Periodic-Frequent Patterns 

1 from PAMI.partialPeriodicFrequentPattern.basic \ 

2 import GPFgrowth as alg 

3 

4 # Initialize the GPFgrowth algorithm with the required 

parameters→֒ 

5 obj = alg .GPFgrowth(
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6 iFile='Temporal_T10I4D100K.csv', 

7 minSup=100, 

8 maxPer=2000, 

9 minPR=0.5, 

10 sep='\t') 

11 

12 # Mine the partial periodic-frequent patterns 

13 obj.mine() 

14 

15 # Save the patterns to a file 

16 obj.save('partialPeriodicFrequentPatterns.txt') 

17 

18 # Retrieve the patterns as a DataFrame 

19 PPFPs = obj.getPatternsAsDataFrame() 

20 

21 # Display summary information 

22 print('#Patterns: ' + str(len (PPFPs))) 

23 print('Runtime: ' + str(obj.getRuntime())) 

24 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

25 print ('Memory (USS): ' + str (obj.getMemoryUSS())) 

6.6.2 Partial Periodic Patterns 

In certain temporal databases, patterns may not occur with consistent periodicity 

throughout the dataset but may still exhibit periodic behavior over specific intervals. 

To capture such behavior, the concept of partial periodic patterns [9] is introduced. 

This approach identifies patterns that may not be frequent in the entire dataset but 

occur periodically within certain segments. 

Definition 6.11 (Periodic Support of a Pattern) The periodic support of a pattern 

P , denoted as PS(P )., is the count of occurrences where P is considered periodic. 

An occurrence of P is considered periodic if the inter-arrival time (the time between 

consecutive occurrences) is within the user-specified maximum inter-arrival time 

(maxIAT ). Fo rmally, 

.PS(P ) = |ÎAT P |, (6.9) 

where ÎAT P ⊆ IAT P
. represents the subset of inter-arrival times that are less than 

or equal to the user-defined maxIAT . 

Definition 6.12 (Partial Periodic Pattern) A pattern P is defined as a partial 

periodic pattern if its periodic support PS(P ). meets or exceeds a user-specified 

threshold, known as the minimum periodic support (minPS). In other words,
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.PS(P ) ≥ minPS. (6.10) 

This means that P must have a sufficient number of periodic occurrences within the 

dataset to be considered a partial periodic pattern. 

Definition 6.13 (Problem Definition) Given a temporal database T  empDB,  a  

maximum inter-arrival time maxIAT , and a minimum periodic support minPS, 

the task is to find all patterns P in T  empDB  such that the periodic support PS(P ). 

is no less than minPS. 

The partial periodic pattern mining search space is 2|I | − 1., where |I |. represents 

the total number of distinct items in the database. Given the vast size of this search 

space, it is crucial to utilize the Apriori property, which states that all non-empty 

subsets of a partial periodic pattern must also be partial periodic patterns. This 

property allows for effective search space pruning, enabling efficient discovery of 

partial periodic patterns. 

The Python code provided below demonstrates how to implement the discovery 

of partial periodic patterns using the PAMI package. The PPPGrowth algorithm is 

employed to identify patterns that meet the specified periodic support c riteria. 

Program 7: Finding Partial Periodic Patterns 

1 from PAMI.partialPeriodicPattern.basic import PPPGrowth as alg 

2 

3 # Initialize the PPPGrowth algorithm with necessary parameters 

4 obj = alg.PPPGrowth(iFile='Temporal_T10I4D100K.csv', minPS=100, 

period=200, sep='\t')→֒ 

5 

6 # Mine the partial periodic patterns 

7 obj.mine() 

8 

9 # Save the patterns to a file 

10 obj.save('partialPeriodicPatterns.txt') 

11 

12 # Retrieve the patterns as a DataFrame 

13 PPFPs = obj.getPatternsAsDataFrame() 

14 

15 # Display summary information 

16 print('#Patterns: ' + str(len(PPFPs))) 

17 print('Runtime: ' + str(obj.getRuntime())) 

18 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

19 print('Memory (USS): ' + str (obj.getMemoryUSS()))
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6.6.3 Recurring Patterns 

Recurring patterns [10] are a distinct subset of periodic patterns that display periodic 

behavior within specific time intervals. These patterns are beneficial when certain 

items or itemsets are consistently purchased during particular periods, such as 

specific hours of the day, days of the week, or seasons of the year. 

For example, consider a recurring pattern like {greenT ea,Obento} {[11 :

00, 14 : 00], [16 : 00, 21 : 00]}.. This pattern indicates that the combination of 

green tea and Obento is frequently purchased during lunch (11:00 AM to 2:00 PM) 

and dinner (4:00 PM to 9:00 PM) time intervals. Such patterns are valuable for 

businesses to understand customer behavior and optimize inventory or promotional 

strategies during peak hours. 

The following Python code demonstrates using the PAMI package to identify 

recurring patterns within a temporal database. 

Program 8: Finding Recurring Patterns 

1 from PAMI.recurringPattern.basic import RPGrowth as alg 

2 

3 # Initialize the RPGrowth algorithm with appropriate parameters 

4 obj = alg.RPGrowth(iFile='Temporal_T10I4D100K.csv', minPS=20, 

maxPer=100, minRec=1, sep='\t') # Separator used in the 

data file

→֒

→֒ 

5 

6 # Mine the recurring patterns 

7 obj.mine() 

8 

9 # Save the patterns to a file 

10 obj.save('recurringPatterns.txt') 

11 

12 # Retrieve the patterns as a DataFrame 

13 recurringPatterns = obj.getPatternsAsDataFrame() 

14 

15 # Display summary information 

16 print('#Patterns: ' + str(len(recurringPatterns))) 

17 print('Runtime: ' + str(obj.getRuntime())) 

18 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

19 print('Memory (USS): ' + str (obj.getMemoryUSS()))
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6.7 Conclusion 

Periodic-frequent pattern mining is crucial for uncovering trends in temporal data, 

but it faces challenges such as the rare item problem and the inability to identify 

partially periodic patterns. The rare item problem stems from the assumption of 

uniform item frequencies, which can either lead to missing important patterns 

or generating excessive, irrelevant results. To overcome this, periodic-correlated 

pattern mining introduces measures like all-confidence and periodic-all-confidence 

to balance the influence of frequent and rare items, ensuring that valuable patterns 

are not overlooked. Additionally, traditional models struggle to capture patterns 

with intermittent periodicity, which partial periodic pattern discovery addresses by 

relaxing strict periodicity requirements. These advancements enhance the ability 

to extract meaningful insights from complex temporal datasets, supporting more 

effective decision-making and strategy optimization. As the field evolves, ongoing 

innovations will continue to refine pattern mining techniques, driving progress in 

data analysis. 
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Chapter 7 

Spatial Databases: Representation, 
Creation, and Statistics 

Abstract This chapter provides a comprehensive guide to working with geo-

referenced databases, focusing on both transactional and temporal formats. It 

covers the theoretical foundations, including formal definitions and mathematical 

representations, as well as practical applications, such as generating synthetic 

datasets, converting dataframes, and analyzing statistical details. Using the PAMI 

package, users can create large-scale geo-referenced databases tailored to specific 

requirements, convert existing data into spatially and temporally aware formats, and 

derive key statistical insights. This chapter equips data scientists and researchers 

with the tools and knowledge to effectively manage and analyze spatial data. 

7.1 Introduction 

A spatial database, also known as a structured certain binary spatial database, 

stores data with spatial attributes, such as the position of pixels in raster images 

or the locations of points, lines, and polygons in vector images. Figure 7.1 visually 

represents the complex factors involved in forming a spatial database. This figure 

highlights the intricate relationships and interactions crucial for organizing and 

analyzing temporal data within the spatial database framework. 

A spatial database does not function independently; it requires integration with 

other types of databases to leverage its capabilities thoroughly. Typically, the data 

about spatial items (or objects) is modeled as part of a transactional or temporal 

database. When a spatial database is combined with a transactional database, the 

resultant is called a geo-referenced transactional database. Similarly, when a spatial 

database is integrated with a temporal database, it forms a geo-referenced temporal 

database. This chapter provides an in-depth exploration of spatial databases, as well 

as geo-referenced transactional and geo-referenced temporal databases, offering 

insights into their structures, functionalities, and applications. 

This chapter covers the following key aspects of transactional databases: 

1. Theoretical Representation: It provides a formal definition of spatial databases, 

geo-referenced transactional databases, and geo-referenced temporal databases 
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Fig. 7.1 Factors contributing to the creation of a spatial database 

using set theory, laying the theoretical foundation for understanding these 

complex systems. 

2. Practical Representation: The chapter explores how these databases are prac-

tically implemented and stored in computer systems, offering insights into their 

real-world applications and management. 

3. Synthetic Database Creation: It discusses techniques for generating synthetic 

databases, which are crucial for testing, benchmarking, and evaluating the 

performance of various pattern mining algorithms. 

4. Dataframe Conversion: The chapter outlines methods for converting struc-

tured dataframes into geo-referenced transactional and geo-referenced temporal 

databases, enhancing their utility for broader data analysis and application 

development. 

5. Database Statistics: It explains how to derive and interpret statistical details 

about the databases, providing tools for assessing their characteristics and 

performance. 

7.2 Theoretical Representation 

7.2.1 Spatial Database 

A spatial database represents a collection of items along with their respective 

coordinates. Each item must have a unique name, and no two items can have the 

same coordinates. The formal definition is provided below. 

Definition 7.1 (Spatial Database) Let SI = {i1, i2, · · · , in}., n ≥ 1., be a set of 

spatial items. Let Pij = {(x1, y1), (x2, y2), · · · , (xp, yp)}, p ≥ 1,. denote the set of 

coordinates for an item ij ∈ SI .. The location (or spatial) database SD is a set of 

items and their coordinates. That is, SD = {(i1, Pi1), (i2, Pi2), · · · , (in, Pin)}..  This  

definition allows the spatial database to represent items of various spatial forms, 

such as pixels, points, lines, or polygons. 

Example 7.1 Let SI = {a, b, c, d, e, f, g}. be a set of spatial items, each represent-

ing a sensor at specific coordinates. Figure 7.2a displays the spatial database for all 

items in SI . The spatial visualization of these items within a coordinate system is 

shown in Fig. 7.2b.
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Fig. 7.2 A spatial database. 

(a) Example of spatial items 

and their coordinates. (b) 

Visualization of the spatial 

locations of the items 

Item Coordinates 

a POINT(0 1) 

b POINT(2 1) 

c POINT(1 0) 

d POINT(1 2) 

e POINT(1 1) 

f POINT(1 5) 

g POINT(1 6) 

(a) Spatial database (b) visualization 

7.2.2 Geo-referenced Transactional Database 

When the data of stationary spatial objects is stored in a transactional database 

format, the resulting system is referred to as a geo-referenced transactional database 

[1]. This type of database integrates the spatial characteristics of objects with the 

transactional data, enabling the analysis and management of spatial information 

within the context of transactional processes. 

Definition 7.2 (Geo-referenced Transactional Database) Let X ⊆ SI . be an 

itemset (or a pattern). If X contains k items, where k ≥ 1., then X is called a k-

pattern. A transaction tt id = (tid, Y )., where t id ≥ 1. represents the transaction 

identifier, and Y ⊆ SI . is a pattern. A transactional database, denoted as T  DB,  is  

a collection of transactions, defined as T DB = {t1, t2, · · · , tm}., where 1 ≤ m ≤

|T DB|., and |T DB|. represents the size of the database. The combination of a spatial 

database and a transactional database forms a geo-referenced transactional database, 

denoted as GT D. Formally, GT D = SD × T DB .. 

Example 7.2 Figure 7.3a illustrates a spatial database, while Fig. 7.3b presents a 

hypothetical transactional database generated by the spatial items. This database 

contains seven transactions, identified by transaction identifiers (or t id) numbered 1 

to 7. When the item information in the transactional database is replaced with their 

corresponding spatial information, the resultant database is termed a geo-referenced 

transactional database. The horizontal format of this database is shown in Fig. 7.3c, 

and the vertical format is depicted in Fig. 7.4. 

•> Important 

A geo-referenced transactional database contains stationary spatial items whose 

positions do not vary over time.
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Fig. 7.3 Creation of a geo-referenced transactional database: (a) spatial database, (b) transactional 

database, and (c) geo-referenced transactional database 

Fig. 7.4 Geo-referenced transactional database in the vertical format 

7.2.3 Geo-referenced Temporal Database 

If the data of the spatial objects is stored in a temporal database format, the resulting 

database is known as a geo-referenced temporal database. 

Definition 7.3 (Geo-referenced Temporal Database) A transaction, denoted as 

tt id ., is a triplet containing a transaction identifier, a timestamp, and a pattern. That 

is, tt id = (tid, ts, Y )., where t id ≥ 1. represents the transaction identifier, ts ∈ R
+

. 

represents the timestamp, and Y ⊆ SI . is a pattern. A temporal database, denoted 

as T  empDB, is an ordered collection of transactions by time. That is, T empDB =

{t1, t2, · · · , tm}., where 1 ≤ m ≤ |T empDB|., and |T empDB|. represents the size of 

the database. Integrating spatial and temporal databases results in a geo-referenced 

temporal database denoted as GT empD. Formally, GT empD = SD × T empDB .. 

Example 7.3 Figure 7.5a shows the spatial database. Figure 7.5b depicts a hypo-

thetical temporal database generated by the spatial items. This database includes 

seven transactions, each numbered from 1 to 7 as the transaction identifiers (or t id). 

The database is characterized by irregular temporal intervals, indicating nonuniform 

gaps between consecutive transactions. When the item information in the temporal 

database is replaced with their spatial information, the resulting database is known 

as a geo-referenced temporal database. The horizontal format of this database is 

shown in Fig. 7.5c, and the vertical format is illustrated in Fig. 7.6.
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Fig. 7.5 Creation of a geo-referenced temporal database: (a) spatial database, (b) temporal 

database, and (c) geo-referenced temporal database 

Fig. 7.6 The vertical format of a geo-referenced temporal database 

•> Important 

A geo-referenced temporal database is a temporal database containing spatial items. 

7.3 Practical Repre sentation 

7.3.1 Spatial Database 

To create a spatial database, follow these rules: 

1. One Transaction per Line: Each line in the file should represent a unique 

transaction. No two lines should be identical. 

2. Two Columns per Line: Each line must have exactly two columns. A delimiter 

should separate these columns. By default, the PAMI algorithms use a tab as the 

delimiter, but you can also use commas or s paces. 

3. Order of Elements in a Line: The first column should contain the name of the 

item. The second column should include the spatial information corresponding 

to that item.
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4. No Duplicates: Each column must have unique entries. In other words, no two 

rows in a column should have the same value. 

In summary, the format of a spatial database should be “spatialI tem〈sep〉coordi . 

nates.” For example, if using a tab as the delimiter, the spatial database shown in 

Fig. 7.2a would look like this: 

a POINT(0 1) 

b POINT(2 1) 

c POINT(1 0) 

d POINT(1 2) 

e POINT(1 1) 

f POINT(1 5) 

g POINT(1 6) 

7.3.2 Geo-referenced T ransactional Database

A geo-referenced transactional database is essentially a transactional database that 

contains spatial items. It follows all the rules for a transactional database (see 

Sect. 3.3). In addition to these rules, items should be replaced with their spatial 

coordinates. The format for this type of database is 

. coordinates1〈sep〉coordinates2〈sep〉coordinates3〈sep〉 · · ·

If using a tab as the delimiter, the geo-referenced transactional database shown 

in Fig. 7.3c would appear like this: 

POINT(0 1) POINT(2 1) POINT(1 0) 

POINT(0 1) POINT(1 0) POINT(1 2) 

POINT(2 1) POINT(1 2) POINT(1 1) POINT (1 5) 

POINT(0 1) POINT(1 0) POINT(1 1) POINT (1 5) 

POINT(0 1) POINT(1 1) POINT(1 5) POINT(1 6) 

POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5) 

POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5)

7.3.3 Geo-referenced Temporal Database

A geo-referenced temporal database [2] is a temporal database that includes spatial 

items. It adheres to all the rules for a temporal database (see Sect. 5.3). Additionally, 

items should be replaced with their spatial coordinates. The format for this type of 

database is
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. t imestamp〈sep〉coordinates1〈sep〉coordinates2〈sep〉coordinates3〈sep〉 · · ·

If the delimiter is a tab, the geo-referenced temporal database shown in Fig. 7.5c 

would look like this: 

1 POINT(0 1) POINT(2 1) POINT(1 0) 

2 POINT(0 1) POINT(1 0) POINT(1 2) 

3 POINT(2 1) POINT(1 2) POINT(1 1) POINT (1 5) 

3 POINT(0 1) POINT(1 0) POINT(1 1) POINT (1 5) 

6 POINT(0 1) POINT(1 1) POINT(1 5) POINT(1 6) 

6 POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5) 

8 POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5)

7.4 Creating Synthetic Datasets

The PAMI package provides a robust and versatile tool for generating synthetic 

geo-referenced transactional and temporal databases to meet various requirements. 

Each item in these databases is assigned a unique random spatial coordinate within 

a defined range. This range is specified by the intervals (x1, y1). and (x2, y2)., where 

x1 ≤ x2 . and y1 ≤ y2 .. Figure 7.7 illustrates the area within which these random 

coordinates will be assigned to the items in the database. 

Fig. 7.7 The  area  within  

which random coordinates 

will be assigned to the items 

in the database
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7.4.1 Generating Synthetic Geo-referenced Transactional 

Database 

The PAMI package offers algorithms to generate synthetic geo-referenced transac-

tional databases based on user specifications. Users can create a database of any 

size, with items having coordinates within specified intervals. 

To illustrate, consider the following sample code that generates a synthetic 

geo-referenced transactional database with 100,000 transactions. Each transaction 

includes an average of 10 items selected from a set of 1000 possible items, with 

coordinates ranging from (0,0) to (100,100): 

Program 1: Generating Synthetic Geo-referenced Transactional Database 

1 from PAMI.extras.syntheticDataGenerator import 

GeoReferentialTransactionalDatabase as db→֒ 

2 

3 obj = 

db.GeoReferentialTransactionalDatabase(databaseSize=100000, 

avgItemsPerTransaction=10, numItems=1000,  x1=0,  y1=0, 

x2=100,  y2=100, sep='\t')

→֒

→֒

→֒ 

4 obj.create() 

5 obj.save('geoReferencedTransactionalDatabase.csv') 

6 #read the generated transactions into a dataframe 

7 GRTDF=obj.getTransactions() 

8 print('Runtime: ' + str(obj.getRuntime())) 

9 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

10 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

7.4.2 Generating Synthetic Geo-referenced Temporal Database 

The PAMI package provides algorithms to create synthetic geo-referenced temporal 

databases tailored to user specifications. Users can generate databases of any size, 

with transactions occurring regularly or irregularly and items having coordinates 

within a defined interval. 

You can create a synthetic geo-referenced temporal database using the following 

sample code. This example generates a database with 100,000 transactions, each 

containing an average of 10 items from a set of 1000 possible items. The coordinates 

for the items are within the range (0,0) to (100,100). The code also specifies 

probabilities for timestamps to illustrate their distribution:
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Program 2: Generating Synthetic Geo-referenced Temporal Database 

1 from PAMI.extras.syntheticDataGenerator import 

GeoReferentialTemporalDatabase as db→֒ 

2 

3 obj = db.GeoReferentialTemporalDatabase(databaseSize=100000, 

avgItemsPerTransaction=10, numItems=1000, 

occurrenceProbabilityOfSameTimestamp=0, 

occurrenceProbabilityToSkipSubsequentTimestamp=0,  x1=0, 

y1=0,  x2=100,  y2=100, sep='\t')

→֒

→֒

→֒

→֒ 

4 obj.create() 

5 obj.save('geoReferentialTemporalDatabase.csv') 

6 GRTempDF=obj.getTransactions() 

7 print('Runtime: ' + str(obj .getRuntime())) 

8 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

9 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

7.5 Deriving Geo-referenced Databases from a Dataframe 

The PAMI package provides functionality to convert a dataframe into either a geo-

referenced transactional database or a geo-referenced temporal database, making it 

suitable for transaction-based data analysis. 

7.5.1 Dataframe to Geo-referenced Transactional Database 

The following code demonstrates how to convert a dataframe into a geo-referenced 

transactional database: 

Program 3: Converting a Dataframe into a Geo-referenced Transactional 

Database 

1 from PAMI.extras.convert import DF2DB as alg 

2 import pandas as pd 

3 import numpy as np 

4 

5 #creating a 4 x 4 dataframe with random values 

6 data = np.random.randint(1, 100, size=(4, 4 ))
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7 dataFrame = pd.DataFrame(data, 

8 columns=['POINT(0 0)', 'POINT(0 1)', 'POINT(0 2)', 'POINT(0 

3)'])→֒ 

9 

10 obj = alg.DF2DB(dataFrame) 

11 obj.convert2TransactionalDatabase( 

12 oFile='georeferencedTransactionalDatabase.txt', 

13 condition='>=', thresholdValue=36 

14 ) 

15 print('Runtime: ' + str(obj.getRuntime())) 

16 print ('Memory (RSS): ' + str(obj.getMemoryRSS())) 

17 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

7.5.2 Dataframe to Geo-referenced Temporal Database 

The following code demonstrates how to convert a dataframe into a geo-referenced 

temporal database: 

Program 4: Converting a Dataframe into a Geo-referenced Temporal 

Database 

1 from PAMI.extras.convert import DF2DB as alg 

2 import pandas as pd 

3 import numpy as np 

4 

5 #creating a 5 x 4 dataframe with random values 

6 data = np.random.randint(1, 100, size=(5, 4)) 

7 dataFrame = pd.DataFrame(data, 

8 columns=['POINT(0 0)', 'POINT(0 1)', 

9 'POINT(0 2)', 'POINT(0 3)']) 

10 # Adding a timestamp column with specific values 

11 timestamps = [1, 3, 3, 5, 8] 

12 dataFrame. insert(0, 'timestamp', timestamps) 

13 #converting the database into a georeferenced temporal database 

14 obj = alg.DF2DB(dataFrame) 

15 obj.convert2TemporalDatabase( 

16 oFile='georeferencedTemporalDatabase.txt', 

17 condition='>=', thresholdValue=36) 

18 print('Runtime: ' + str(obj.getRuntime()))



7.6 Knowing the Statistical Details 85 

19 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

20 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

7.6 Knowing the Statistical Details 

The dbStats sub-sub-package in the extras sub-package of PAMI provides users 

with statistical details about a geo-referenced database. 

7.6.1 Statistical Details of a Geo-referenced Transactional 

Database 

The PAMI library provides the following statistical details for a geo-referenced 

transactional database: 

1. Database size: Total number of transactions 

2. Total number of items: Unique items in the database 

3. Transaction lengths: Minimum, average, and maximum number of items per 

transaction 

4. Standard deviation of transaction sizes: Variability in the number of items per 

transaction 

5. Variance in transaction sizes: Measure of dispersion in transaction sizes 

6. Sparsity: Measure of how sparse the data is 

7. Item frequencies: Count of each item’s occurrence in the database 

8. Distribution of transaction lengths: How transaction sizes are distributed 

across the database 

9. Spatial visualization: Visual representation of item locations 

Here is how to use dbStats to obtain these s tatistics: 

Program 5: Deriving Statistical Details for a Geo-referenced Transactional 

Database 

1 from PAMI.extras.dbStats import 

GeoreferencedTransactionalDatabase as stat→֒ 

2 

3 obj = stat.GeoreferencedTransactionalDatabase(iFile = 

"georeferencedTransactionalDatabase.txt")→֒ 

4 obj.run() 
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5 obj.printStats() 

6 obj.plotGraphs() 

7.6.2 Statistical Details of a Geo-referenced Temporal 

Database 

The PAMI library provides the following statistical details for a geo-referenced 

temporal database: 

1. Database size: The total number of transactions in the database 

2. Total number of items: The number of unique items in the database 

3. Transaction lengths: The minimum, average, and maximum number of items in 

the transactions 

4. Standard deviation of transaction sizes: A measure of the variability in the 

number of items per transaction 

5. Variance in transaction sizes: A measure of how transaction sizes differ from 

the average 

6. Sparsity: The proportion of empty (zero) elements in the database 

7. Item frequencies: The count of occurrences of each item in the database 

8. Distribution of transaction lengths: How transaction sizes are spread across the 

database 

9. Inter-arrival times: The minimum, average, and maximum time intervals 

between transactions 

10. Periodicity of items: The minimum, average, and maximum time intervals 

between occurrences of the same item 

11. Spatial visualization: Visual representation of item locations 

Here is an example of how to use the dbStats to obtain the statistics: 

Program 6: Deriving the Statistical Details for Geo-referenced Temporal 

Database 

1 from PAMI.extras.dbStats import GeoreferencedTemporalDatabase 

as stat→֒ 

2 

3 obj = stat.GeoreferencedTemporalDatabase(iFile = 

"georeferencedTemporalDatabase.txt")→֒ 

4 obj .run() 

5 obj.printStats() 

6 obj.plotGraphs() 
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7.7 Conclusion 

In this chapter, we explored geo-referenced databases’ creation, manipulation, and 

analysis, focusing on both transactional and temporal contexts. We delved into the 

practical steps for generating synthetic datasets, providing a hands-on approach to 

creating large-scale geo-referenced transactional and temporal databases using the 

PAMI package. Additionally, we examined methods to convert existing dataframes 

into geo-referenced formats, thus enhancing their applicability in spatial-temporal 

data analysis. 

Finally, we discussed the statistical analysis of these databases, highlighting the 

importance of understanding key metrics such as transaction lengths, sparsity, and 

periodicity. By leveraging the methods provided in the PAMI package, users can 

efficiently derive and visualize these statistics, enabling more informed decision-

making in spatial-temporal data management and analysis. 

This chapter serves as a comprehensive guide for anyone working with geo-

referenced databases. It provides both theoretical foundations and practical appli-

cations to empower data scientists and researchers. 
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Chapter 8 

Pattern Discovery in Spatial Databases 

Abstract This chapter presents a comprehensive approach to mining geo-

referenced frequent patterns and geo-referenced periodic-frequent patterns by 

integrating spatial and temporal dimensions in transactional databases. Geo-

referenced frequent patterns focus on identifying sets of spatially proximate items 

that occur frequently, while geo-referenced periodic-frequent patterns extend this 

by considering periodicity in their occurrence. Efficient search techniques such as 

the anti-monotonic property and neighborhood-aware depth-first search are utilized 

to manage the large search space inherent in these tasks. The chapter also introduces 

algorithms from the PAMI library, including FSP-growth and GPFPMiner, 

which facilitate the discovery of these patterns. Real-world applications, such as 

environmental sensor networks, can benefit from the insights gained through these 

mining techniques, enabling a better understanding of spatial-temporal dynamics. 

Practical Python implementations are provided to demonstrate how to mine, save, 

and analyze geo-referenced patterns in large datasets. This chapter highlights the 

importance of combining spatial and temporal analyses for improving decision-

making and system optimization in various domains. 

8.1 Introduction 

The previous chapter explored the concepts of spatial database construction, 

representation, and statistical analysis. Building on that foundation, this chapter 

focuses on extracting and analyzing meaningful patterns, which are critical for 

understanding trends and behaviors over space and time. 

Traditional frequent pattern mining and its variants, such as correlated pattern 

mining and periodic-frequent pattern mining, generally assume that the spatial 

relationships between items do not affect the overall interestingness of a pattern. 

However, this assumption limits the effectiveness of these models when applied 

to spatial databases. In many real-world applications, patterns whose items are 

spatially close to one another are often more significant to users than those where the 

items are widely dispersed across a coordinate system. Consequently, incorporating 

spatial proximity into the pattern mining process is essential for uncovering more 

meaningful insights from spatiotemporal datasets. 
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Fig. 8.1 Air pollution analytics using frequent patterns. The terms “SID,” “PM2.5,” “FPs,” and 

“S” represent “station identifier,” “particular matter with diameter 2.5 µ.m or less,” “frequent 

patterns,” and “support ,” respectively 

Example 8.1 Air pollution is a significant contributor to many cardio-respiratory 

health issues reported by residents of Japan. To address this, the Japanese Ministry 

of the Environment established the Atmospheric Environmental Regional Obser-

vation System (AEROS) (https://soramame.env.go.jp/). This system consists of 

air pollution sensors distributed across the country. Figure 8.1a shows the spatial 

distribution of these sensors in AEROS. The data generated by this sensor network 

at hourly intervals (see Fig. 8.1b) can be structured as a transactional database 

(Fig. 8.1c) and analyzed using the frequent pattern model (Fig. 8.1d) to identify 

sets of sensors (or geographic regions) where high levels of an air pollutant, such as 

PM2.5 .,
1 occur frequently. 

For instance, let {365, 996, 2769, 4815, 5687, 2395}. 2 and {4276, 4341, 4495,.– 

4273, 4455}. 3 be two frequent patterns identified in the air pollution database. 

The frequent pattern model treats both equally relevant, regardless of the spatial 

distances between the sensors. However, the user might find the latter pattern more 

meaningful, as it corresponds to a specific geographical area (i.e., the bay areas 

south of Tokyo) where residents have been consistently exposed to high levels of 

PM2.5 .. This highlights a limitation of applying traditional frequent pattern models 

on geo-referenced transactional databases, where spatial information is an integral 

part of the data. 

To discover valuable patterns in spatial (or geo-referenced) datasets, the 

researchers exploited the notion of “neighborhood items" and introduced different 

types of interesting patterns hidden in geo-referenced transactional and temporal 

databases. This chapter describes the notion of “neighborhood items," how to create 

a neighborhood file, and discuss various types of patterns that can be discovered 

from geo-referenced databases.

1 PM2.5 . refers to fine particulate matter with a diameter of 2.5 µ.m or smaller. 
2 This pattern is represented by black dots in Fig. 8.1e. 
3 This pattern is represented by red dots in Fig. 8.1e. 

https://soramame.env.go.jp/
https://soramame.env.go.jp/
https://soramame.env.go.jp/
https://soramame.env.go.jp/
https://soramame.env.go.jp/
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This chapter delves into the following topics: 

1. Neighboring Items: We will define the notion of neighboring items, how to 

create a neighborhood file, and describe its process. 

2. Pattern Discovery in Geo-referenced Transactional Databases: This subsec-

tion describes the model of geo-referenced frequent patterns and how to find 

them using the PAMI package. 

3. Pattern Discovery in Geo-referenced Temporal Databases: This subsection 

describes the model of geo-referenced periodic patterns and how to find them 

using the PAMI package. 

8.2 Neighboring Items 

The concept of “neighborhood” is a crucial differentiator between pattern discovery 

in spatial databases and conventional pattern discovery in transactional or temporal 

databases. In spatial databases, such as geo-referenced transactional and geo-

referenced temporal databases, the goal is to uncover patterns consisting only of 

neighboring items. Neighboring items are those located close to one another in 

space. Next, we will formally define the notion of “neighboring items.” 

8.2.1 Definition 

Definition 8.1 (Neighborhood Items) Two spatial items, ip . and iq ∈ SI .,  are  

considered neighbors if the distance between them, Dist (ip, iq) = Dist (iq , ip)., 

is less than or equal to a user-defined maximum distance (maxDist). Here, Dist (.). 

is a distance function that adheres to the commutative property. The set of all 

neighboring items for a given item ij ∈ I . is denoted by Nij .. 

Example 8.2 Let I = {POINT (0, 1), POINT (2, 1), POINT (1, 0), POINT . 

(1, 2),.- POINT (1, 1), POINT (1, 5), POINT (1, 6)}. be the set of loca-

tions of spatial items. The spatial database for all items in I . is pre-

sented in Table 8.1. Using the Euclidean distance as the distance function, 

the distance between items POINT (0, 1). and POINT (1, 0). is given by 

Dist (POINT (0, 1), POINT (1, 0)) = 1.414., since the user-specified 

maxDist = 1.5., POINT (0, 1)., and POINT (1, 0). are considered neighbors 

because Dist (POINT (0, 1), POINT (1, 0)) ≤ maxDist .. Additionally, items 

POINT (1, 2). and POINT (1, 1). are also neighbors of POINT (0, 1)., resulting 

in the set of neighbors NPOINT (0,1) = {POINT (1, 0), POINT (1, 2), POINT . 

(1, 1)}.. The complete list of neighbors for every item in the database is shown in 

Table 8.2.
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Table 8.1 Spatial database 

Items Items Items Items 

POINT (0, 1). POINT (1, 0). POINT (1, 1). POINT (1, 6). 

POINT (2, 1). POINT (1, 2). POINT (1, 5). 

Table 8.2 Neighborhood items 

Item Neighbors 

POINT (0, 1). {POINT (1, 0)., POINT (1, 2)., POINT (1, 1).} 

POINT (2, 1). {POINT (1, 0)., POINT (1, 2)., POINT (1, 1).} 

POINT (1, 0). {POINT (0, 1)., POINT (2, 1)., POINT (1, 1).} 

POINT (1, 2). {POINT (0, 1)., POINT (2, 1)., POINT (1, 1).} 

POINT (1, 1). {POINT (0, 1)., POINT (2, 1)., POINT (1, 0)., POINT (1, 2).} 

POINT (1, 5). {POINT (1, 6).} 

POINT (1, 6). {POINT (1, 5).} 

8.2.2 Practical Representation 

To create a neighborhood file for the items, follow these rules: 

1. One Transaction per Line: Each line in the file should represent a unique 

transaction. No two lines should be identical. 

2. Order of Elements in a Line: The first element in a line represents the main 

item. The remaining elements in a line represent the neighbors of the main item. 

3. Delimiter: A delimiter should separate the items in a line. By default, the PAMI 

algorithms use a tab as the delimiter, but you can also use commas or s paces. 

In summary, the format of a neighborhood file should be 

. spatialI tem1〈sep〉spatialI tem2〈sep〉spatialI tem3〈sep〉 · · ·

For example, if using a tab as the delimiter, the neighborhood file shown in 

Table 8.2(a) would look like this: 

POINT(0,1) POINT(1,0) POINT(1,2) POINT(1,1) 

POINT(2,1) POINT(1,0) POINT(1,2) POINT(1,1) 

POINT(1,0) POINT(0,1) POINT(2,1) POINT(1,1) 

POINT(1,2) POINT(0,1) POINT(2,1) POINT(1,1) 

POINT(1,1) POINT(0,1) POINT(2,1) POINT(1,0) POINT(1,2) 

POINT(1,5) POINT(1,6)

POINT(1,6) POINT(1,5)
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8.2.3 Creating Neighborhood File 

The PAMI package offers a utility for generating neighborhood files from geo-

referenced transactional databases, where spatial items are represented as points. 

By leveraging Euclidean distance, users can efficiently identify neighbors for each 

spatial item within a specified maximum distance threshold. 

The following Python code demonstrates how to process a geo-referenced 

transactional database. It finds the neighbors for each spatial item, restricted by the 

user-defined maximum distance, and outputs the results to a file or a dataframe for 

further analysis. 

Program 1: Generating Neighborhood File 

1 from PAMI.extras.neighbours import FindNeighboursUsingEuclidean 

as db→֒ 

2 

3 obj = db.FindNeighboursUsingEuclidean( 

4 iFile='spatiotransactional_T10I4D100K.csv', 

5 maxDist=10, 

6 sep='\t') 

7 obj.create() 

8 obj.save(oFile='neighbors.txt',) 

9 #read the generated transactions into a dataframe 

10 neighboringItems=obj.getNeighboringInformation() 

11 #stats 

12 print('Runtime: ' + str(obj. getRuntime())) 

13 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

14 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

This script identifies neighboring spatial items and provides runtime and memory 

statistics, facilitating performance evaluation and optimization for large datasets. 

The resulting dataframe can be seamlessly integrated into further analyses or 

visualizations. 

8.3 Geo-referenced Frequent Pattern 

8.3.1 The Basic Model 

Let J = {j1, j2, . . . , jm}., wherem ≥ 1., represent a set of geo-referenced (or spatial) 

items. For each item jk ∈ J .,  let Qjk
= {(x1, y1), (x2, y2), . . . , (xq , yq)}, q ≥ 1.,
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denote the set of coordinates associated with that item. The spatial database SD . 

compiles these items along with their respective coordinates, such that: 

. SD = {(j1,Qj1), (j2,Qj2), . . . , (jm,Qjm)}.

This structure allows for the representation of spatial items in various forms, 

including points, lines, or polygons. If Y ⊆ J . is an itemset (or pattern) containing 

r . items, it is termed an r .-pattern. A pattern Y . in SD . is defined as an interesting 

geo-referenced pattern if the maximum distance between any two of its items does 

not exceed the user-specified maxDist .. Formally, Y . is a geo-referenced pattern if: 

. max(Dist (ja, jb) | ∀ja, jb ∈ Y ) ≤ maxDist, where a, b ∈ [1,m],

and Dist (). is a distance function that satisfies the commutative property. 

Example 8.3 Let J = {POINT (0, 1), POINT (2, 1), POINT (1, 0), POINT . 

(1, 2),.- POINT (1, 1), POINT (1, 5), POINT (1, 6)}. represent a set of air 

pollution measuring sensors (or their locations). Table 8.1 presents the spatial 

database for these items. Using the Euclidean distance function, the set of items 

POINT (0, 1). and POINT (1, 0)., denoted as {POINT (0, 1), POINT (1, 0)}., 

forms a pattern containing two items, making it a 2-pattern. The distance between 

POINT (0, 1). and POINT (1, 0). is given by Dist (POINT (0, 1), POINT . 

(1, 0)) = 1.414., since the user-specified maxDist = 1.5., POINT (0, 1)., and 

POINT (1, 0). are neighbors, and thus {POINT (0, 1), POINT (1, 0)}. qualifies 

as an interesting geo-referenced pattern because max(Dist (x, z)) ≤ maxDist .. 

A transaction tt id = (tid, Y ). consists of a transaction identifier t id ≥ 1. and 

a pattern Y ⊆ J ..  A  transactional database, denoted as T D ., is a collection of 

such transactions: T D = {t1, t2, . . . , tn}, 1 ≤ n ≤ |T D|,. where |T D|. represents 

the size of the database. If a pattern Z ⊆ Y ., it is said that Z . occurs in transaction 

tt id ..  Let T IDZ = {t idZ
a , tidZ

b , . . . , t idZ
c }, a, b, c ∈ (1, |T D|). denote the set of all 

transaction identifiers where pattern Z . appears in the database. The support of Z . 

in T D ., denoted as sup(Z)., represents the count of transactions containing Z ., i.e., 

sup(Z) = |T IDZ|.. 

Definition 8.2 (Geo-referenced Frequent Pattern [1]) A pattern Z . is considered 

a geo-referenced frequent pattern if it meets the following two conditions: (i) 

sup(Z) ≥ minSup . and (ii) max(Dist (jl, jm) | ∀jl, jm ∈ Z) ≤ maxDist .. Here, 

minSup . is the user-specified minimum support threshold. 

Example 8.4 The transactional database for all items in Table 8.3 is shown in 

Table 8.4. This model accommodates irregular transaction occurrences in a 

temporal database. For instance, the first transaction indicates that sensors a ., c., 

and d . recorded hazardous levels of the air pollutant PM2.5 . at timestamp 1. Similar 

interpretations apply to the other transactions in Table 8.4. The size of this database 

is n = |T D| = 14.. The spatial pattern ac. appears in transactions with timestamps 

1, 2, 3, 16, 17, 18,. and 20., leading to T Sac = {1, 2, 3, 16, 17, 18, 20}.. Thus, the
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Table 8.3 Spatial database Item Coord. 

a (0, 1). 

b (2, 1). 

c (1, 0). 

d (1, 2). 

e (1, 1). 

f (1, 5). 

g (1, 6). 

Table 8.4 Transactional 

database 
ts  Items 

1 acd 

2 abce 

3 abcd 

4 def 

5 deg 

8 adg 

10 adf 

11 bcd 

12 adf 

13 ae 

16 abcf 

17 abcd 

18 abcg 

20 abcd 

support of ac. in the database is sup(ac) = |T Sac| = 7.. Given the user-specified 

minSup = 5., the spatial pattern ac. qualifies as a geo-referenced frequent pattern 

since sup(ac) ≥ minSup .. 

Definition 8.3 (Problem Definition) Given a set of items J ., a spatial database SD ., 

a transactional database T D .,  a  minimum support value minSup ., and a maximum 

distance value maxDist .,  the  problem definition is to identify all patterns in T D . 

that have support no less than minSup . and a maximum distance between any two 

items no greater than maxDist .. 

8.3.2 Handling the Search Space 

The search space of the geo-referenced frequent pattern is 2n−1,.where n represents 

the total number of items in the geo-referenced transactional database. One can 

handle this huge search space using the anti-monotonic property of minSup 

and neighborhood-aware depth-first search. In the neighborhood-aware depth-first 

search, the depth-first search on the itemset lattice is carried only for the child nodes 

that contain all items as neighbors of the items in their respective parent nodes.
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8.3.3 Finding Geo-referenced Frequent Patterns 

The PAMI library provides FSP-growth and Spatial ECLAT algorithms to find geo-

referenced frequent patterns. Below is an example Python script demonstrating how 

to find the geo-referenced frequent patterns using the FSP-growth algorithm. 

Program 2: Finding Geo-referenced Frequent Patterns 

1 from PAMI.georeferencedFrequentPattern.basic import FSPGrowth 

as alg→֒ 

2 

3 obj = alg.FSPGrowth("spatiotransactional_T10I4D100K.csv", 

4 "neighbors.txt", 1500, '\t') 

5 

6 obj.mine() 

7 obj.save('georeferencedFrequentPatterns.txt') 

8 

9 # Retrieve the patterns as a DataFrame 

10 GFPs = obj.getPatternsAsDataFrame() 

11 

12 # Display summary information 

13 print('#Patterns: ' + str(len(GFPs))) 

14 print(' Runtime: ' + str(obj.getRuntime())) 

15 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

16 print(' Memory (USS): ' + str (obj.getMemoryUSS())) 

8.4 Geo-referenced Periodic-Frequent Pattern 

8.4.1 The Basic Model 

Continuing with the basic spatial database model, we denote a time series database, 

T  SD, as a set of events. Each event represents t imestamp  and items. That is, 

T SD = ∪ts∈R+ ∪n
j=1 (ts, ij ),.where ts ∈ R

+
. represents the timestamp. For brevity, 

the time series database can also represented by grouping the events by a timestamp 

as follows: A (irregular) time series database T  SD  is a collection of t ransactions. 

That is, T SD = {tk, tl, · · · , tm}., k ≤ l ≤ m ≤ |T SD|., where tm = (ts, Y )., 

where Y ⊆ I . is a pattern and |T SD|. represents the size of database. If a pattern 

X ⊆ Y ., it is said that X occurs in transaction tm .. The timestamp of this transaction 

is denoted as tsX
m ..  Let T SX = {tsX

k , tsX
l , · · · , tsX

m }, k, l, m ∈ (1, |T SD|),. denote 

the set of all timestamps in which the pattern X has appeared in the database.
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The number of transactions containing X in T  SD  is defined as the support of 

X and denoted as sup(X).. That is, sup(X) = |T SX|.. The pattern X is said to 

be a frequent pattern if the sup(X) ≥ minSup,. where minSup refers to the 

user-specified minimum support value. Let tsX
k . and tsX

l ., j ≤ k < l ≤ m.,  be  the  

two consecutive timestamps in T SX
.. The time difference (or an inter-arrival time) 

between tsX
l . and tsX

k . is defined as a period of X,  say  pX
a .. That is, pX

a = tsX
l − tsX

k .. 

Let P X = (pX
1 , pX

2 , · · · , pX
b ). be the set of all periods for pattern X.  The  

periodicity of X, denoted as per(X) = max(pX
1 , pX

2 , · · · , pX
b ).. The frequent 

pattern X is said to be a periodic-frequent pattern if per(X) ≤ maxPer ., where 

maxPer refers to the user-specified maximum periodicity value. The periodic-

frequent pattern X is considered a GPFP if the maximum distance between its items 

is less than or equal to the user-specified maximum distance (maxDist) value. That 

is, X is a GPFP if max(Dist (ip, iq)|∀ip, iq ∈ X) ≤ maxDist,. where dist (). 

is a distance function, say Euclidean distance, and maxDist is a user -specified 

maximum distance. value [2]. 

Example 8.5 Let I = {p, q, r, s, t, u}. be a set of sensor identifiers (or 

items) in a network. The spatial locations of these items are shown in Table 8.5. 

A hypothetical time series database constituting these items is shown in Table 8.6. 

In the first transaction of Table 8.6, “1” represents the timestamp, and {p, q, r, s}. 

represents the transaction containing the items.4 A similar statement can be made 

on remaining transactions in Table 8.6. The size of this temporal database, i.e., 

|T SD| = 10.. The complete set of timestamps at which rs has occurred in Table 8.6, 

i.e., T Srs = {1, 2, 5, 6, 9, 10}..  The  support of “rs, ” i.e., sup(rs) = |T Srs | =

|{1, 2, 5, 6, 9, 10}| = 6.. If the user-specified minSup = 3., then rs is said to be 

a frequent pattern because of sup(rs) ≥ minSup.. The periods for this pattern are: 

prs
1 = 1 (= 1 − tsinitial)., prs

2 = 1 (= 2 − 1)., prs
3 = 3 (= 5 − 2)., prs

4 = 1 (=

6 − 5)., prs
5 = 3 (= 9 − 6)., prs

6 = 1 (= 10 − 9)., and prs
7 = 0 (= tsf inal − 10)., 

where tsinitial = 0. represents the timestamp of initial transaction and tsf inal =

|T SD| = 10. represents the timestamp of final transaction in the database. The 

periodicity of rs, i.e., per(rs) = maximum(1, 2, 3, 1, 3, 1, 0) = 3..  If  the  

user-defined maxPer = 4., then the frequent pattern “rs” is said to be a periodic-

frequent pattern because per(rs) ≤ maxPer .. The pattern rs is also a GPFP because 

max(Dist (r, s)) ≤ maxDist .. 

Table 8.5 Location (or 

geo-referential) database 
Item Point Item Point 

p (2,3) s (2,3) 

q (6,8) t (1,5) 

r (1,4) u (3,4)

4 A set of sensor identifiers in which pollution is very high at timestamp 1. 
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Table 8.6 Time series 

database. The items whose 

values were equal to 0 at a 

particular timestamp were 

removed for brevity 

ts Items ts Items 

1 p, q, r, s . 6 p, q, r, s . 

2 r, s, t . 7 p, q . 

3 p, q, r, u. 8 t, u. 

4 p, s, t . 9 r, s . 

5 q, r, s, t, u. 10 p, q, r, s, t, u. 

8.4.2 Handling the Search Space 

The search space of geo-referenced periodic-frequent pattern mining is the same 

as that of geo-referenced frequent pattern mining. In other words, the search space 

of geo-referenced periodic-frequent patterns is 2n − 1., where n represents the total 

number of items in the data. One can effectively reduce the search space using the 

anti-monotonic property and the neighborhood-aware depth-first search . 

8.4.3 Finding Geo-referenced Periodic-Frequent Patterns 

The PAMI library provides GPFPMiner, PFS-ECLAT, and ST-ECLAT algorithms to 

find geo-referenced periodic-frequent patterns. Below is an example Python script 

demonstrating how to find the geo-referenced periodic-frequent patterns using the 

GPFPMiner algorithm. 

Program 3: Finding Geo-referenced Periodic-Frequent Patterns 

1 from PAMI.geoReferencedPeriodicFrequentPattern.basic import 

GPFPMiner as alg→֒ 

2 

3 obj = alg.GPFPMiner("spatiotemporal_T10I4D100K.csv", 

4 "neighbors.txt", 1500, 500, '\t') 

5 

6 obj.mine() 

7 obj.save('georeferencedPeriodicFrequentPatterns.txt') 

8 

9 geoperiodicFrequentPatternsDF= obj.getPatternsAsDataFrame() 

10 print('Total No of patterns: ' + 

str(geoperiodicFrequentPatternsDF))→֒ 

11 print('Runtime: ' + str(obj.getRuntime())) #measure the runtime 

12 

13 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

14 print('Memory (USS): ' + str(obj .getMemoryUSS())) 
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8.5 Conclusion 

This chapter explored the concepts and techniques for mining geo-referenced 

frequent patterns and geo-referenced periodic-frequent patterns. By incorporating 

both spatial and temporal dimensions, these patterns provide valuable insights into 

how data points (such as sensor readings) behave across time and space. 

We began by defining geo-referenced frequent patterns, which consider spatial 

proximity between items. We then continued to define geo-referenced periodic-

frequent patterns, which also take into account periodicity in addition to spatial 

proximity and frequency. 

To manage the vast search space, we employed efficient search techniques, such 

as the anti-monotonic property and neighborhood-aware depth-first search, which 

significantly reduced the computational complexity. Additionally, we demonstrated 

how to use the PAMI library, which provides algorithms like FSP-growth, GPFP-

Miner, and others for mining such patterns. 

The Python script examples provided in the chapter show how these algorithms 

can be practically applied to datasets, illustrating the process of mining, saving, 

and analyzing geo-referenced patterns. These patterns are beneficial in real-world 

applications such as air pollution monitoring, environmental studies, and sensor 

networks, where understanding the interplay between spatial and temporal factors 

is crucial. 

By identifying patterns that recur periodically and are geographically close, we 

can gain a deeper understanding of the dynamics within spatial networks and time 

series data, ultimately helping to improve decision-making and system optimization 

in various fields. 
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Chapter 9 

Utility Databases: Representation, 
Creation, and Statistics 

Abstract This chapter provides a comprehensive overview of utility databases, 

elucidating their theoretical foundations, practical applications, and significance in 

data mining and analysis. We begin with a formal definition of utility databases, 

detailing their structure and the identification of transactions using set theory. Prac-

tical considerations for storing and managing utility databases on computing devices 

are discussed, including formatting rules and transaction storage. Additionally, we 

explore methods for generating synthetic utility databases, which are crucial for 

testing and benchmarking algorithms in data mining. Techniques for converting 

structured dataframes into utility databases are also covered, expanding the scope of 

data analysis. Furthermore, we examine how to derive and interpret statistical details 

of utility databases to enhance understanding of their properties and optimize their 

use. By integrating theoretical insights with practical skills, this chapter provides 

users with the procedures to effectively manage, analyze, and leverage utility 

databases in diverse real-world applications, laying the groundwork for advanced 

data analysis. 

9.1 Introduction 

A structured certain nonbinary transactional database, or utility database [1], is an 

organized collection of transactions where items can take values from (−∞,∞).. 

A transactional identifier uniquely identifies each transaction. Utility databases are 

widely used in various real-world applications. For instance, in sensor networks, 

each transaction might represent the values recorded by sensors at specific time 

intervals. A utility database holds pixel data and their associated band values of 

satellite imagery. In social networks, utility databases track user interactions and 

activities over time, aiding in discovering trends and patterns in user behavior. 

Figure 9.1 illustrates the critical factors in creating a utility database. The 

figure highlights the complex relationships and interactions essential for organizing 

and analyzing nonbinary data within the utility database framework. When all 

transactions in a utility database are accumulated over time, the result is a utility 

temporal database. Likewise, if the database contains spatial elements, it forms 
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Fig. 9.1 Illustration of factors contributing to the creation of a utility database 

a geo-referenced utility (transactional or temporal) database. For the sake of 

brevity, this chapter focuses on knowledge discovery within the conventional utility 

database. 

This chapter covers the following key aspects of utility databases: 

1. Theoretical Representation: Provides formal definitions of utility databases. 

2. Practical Representation: Discusses how utility databases are structured, 

stored, and managed in computer systems, with examples of real-world 

applications. 

3. Synthetic Database Creation: Covers techniques for generating synthetic 

databases, essential for testing, benchmarking, and evaluation purposes. 

4. Dataframe Conversion: Explores methods for transforming structured 

dataframes into utility databases, expanding their use for comprehensive data 

analysis. 

5. Database Statistics: Explains how to calculate and interpret statistical metrics 

to evaluate the characteristics and performance of these databases. 

9.2 Theoretical Representation 

A (transactional) utility database represents a collection of nonbinary transactions, 

each uniquely identified and containing a specific set of items and their values. 

Definition 9.1 (External Utility Database) Let J = {j1, j2, . . . , jn}. where n ≥

1. denotes a collection of items. Each item jk ∈ J . is associated with a positive 

value eu(jk)., referred to as its external utility. This external utility indicates the 

significance of the item to the user. The external utility database (EUD) is defined 

as the aggregation of all items in J . along with their respective external utility values, 

formally represented as 

. EUD = {(j1, eu(j1)), (j2, eu(j2)), . . . , (jn, eu(jn))}.

Example 9.1 Let J = {Bread, Jam,Butter,Book,Pen}. represent a collection of 

items available in a supermarket. The prices of these items, as illustrated in
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Table 9.1a, constitute the external utility database. These external utility values also 

reflect the items’ relative importance within the application context. 

Definition 9.2 (Internal Utility Database) An internal utility (transactional) 

database is defined as a set of transactions UDB = {T1, T2, . . . , Tm},m ≥ 1., 

where each transaction Ti ∈ UDB . is a subset of J . and is uniquely identified by 

a positive integer i ∈ Z
+

., known as its transaction identifier (or t id .). Within each 

transaction Ti ., every item jk ∈ Ti . is assigned a positive value f (jk, Ti)., referred to 

as its internal utility. The internal utility typically represents the frequency of the 

item’s occurrence within that transaction. 

Example 9.2 A hypothetical internal utility database representing the purchases of 

items in J . is presented in Table 9.1b. The first transaction indicates that a customer 

has purchased two units of Bread, one unit of Jam, and three units of Butter. Similar 

interpretations can be applied to the other transactions in this table. 

Definition 9.3 (Utility Database) A utility database, denoted as UD ., is an internal 

utility database in which the internal utility values of the items in a transaction are 

replaced by the product of their external and internal utility values. 

Example 9.3 Table 9.1c displays the utility database generated by multiplying the 

internal and external utility values of all items in the transactions of an internal 

utility database. 

Table 9.1 Hypothetical utility database of a supermarket 

(a) External utility database (b) Internal utility database 

Item Price ( Rs..) 

Bread 50 

Jam 50 

Butter 50 

Book 20 

Pen 20 

t id Items 

1 (Bread,2), (Jam,1), (Butter,3) 

2 (Bread,1), (Book, 2), (Pen,3) 

3 (Jam,3), (Butter,1) 

4 (Bread,2), (Jam,1), (Butter,2), (Pen,1) 

5 (Book,3), (Pen,1) 

(c) Utility database 

tid Bread Jam Butter Book Pen 

1 100 ( = 2 × 50.) 50 ( = 1 × 50.) 150 ( = 3 × 50.) 0  (  = 0 × 20.) 0  (  = 0 × 20.) 

2 50 0 0 40 60 

3 0 150 50 0 0 

4 100 50 100 0 20 

5 0 0 0 60 20 
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9.3 Practical Representation 

A utility database is typically stored as a file on a computer. To effectively create 

and manage this file, the following rules should be observed: 

• One Transaction per Line: Each line in the file corresponds to a single 

transaction. The line number implicitly serves as the transaction identifier (t id), 

so it is not explicitly stored in the file, which helps save space and reduce 

processing costs. 

• Three Components of a Transaction: Each transaction consists of three 

components. The first component lists the items involved in the transaction. The 

second component presents the sum of the utility values of all items in that 

transaction. The final component contains the individual utility values for each 

item in the respective transaction. 

• Separator for the Components: A colon delimiter must separate the three 

components of each transaction. Users cannot alter this delimiter. 

• Separator for the Elements in a Component: The elements within a component 

can be separated by any delimiter, such as a tab, space, or comma. In the 

algorithms used in PAMI, a tab is considered the default delimiter for items or 

utility values within a component. 

Overall, the format of a transaction in a utility database is 

. item1〈sep〉item2〈sep〉 · · · : totalUtility : utility1〈sep〉utility2〈sep〉 · · ·

Example 9.4 If the delimiter is a tab, the utility database shown in Table 9.1c 

would appear as follows: 

Bread Jam Butter:300:100 50 150 

Bread Book Pen:150:50 40 60 

Jam Butter:200:150 50 

Bread Jam Butter Pen:270:100 50 100 20 

Book Pen:80:60 20 

•> Important 

The “colon” is the default separator used to divide the components of a transaction, 

and users cannot change this separator. 

•> Important 

The “tab” is the default separator used to split items or values within the component 

of a transaction, but users can modify this separator.
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9.4 Creating Synthetic Utility Databases 

The PAMI package provides a powerful and flexible tool for generating synthetic 

utility databases, which can be tailored to meet various requirements. This capability 

is precious for testing and developing algorithms in data mining and related fields. 

Users can customize the database based on their specific needs, including the 

number of transactions, the total number of items, average transaction length, and 

several other utility parameters. 

To illustrate the process of creating a synthetic utility database, consider the fol-

lowing sample code. This example generates a database with 100,000 transactions, 

each containing an average of 10 items selected from a set of 1000 possible items: 

Program 1: Generating a Synthetic Utility Database 

1 from PAMI.extras.syntheticDataGenerator import UtilityDatabase 

as db→֒ 

2 obj = db.UtilityDatabase(databaseSize=100000, 

avgItemsPerTransaction=10, numItems=1000, 

minInternalUtilityValue=1, maxInternalUtilityValue=100, 

minExternalUtilityValue=100, maxExternalUtilityValue=1000, 

sep='\t')

→֒

→֒

→֒

→֒ 

3 obj.create() 

4 obj.save('utilityDatabase.csv') 

5 utilityDataFrame = obj.getTransactions() 

6 print('Runtime: ' + str(obj.getRuntime())) 

7 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

8 print('Memory (USS): ' + str(obj.getMemoryUSS())) 

9.5 Deriving a Utility Database from a Dataframe 

The PAMI package enables users to convert a dataframe into a utility database, 

which is ideal for transaction-based data analysis. Below is a Python code snippet 

illustrating how to use PAMI for this conversion: 

Program 2: Converting a Dataframe into a Utility Database 

1 from PAMI.extras.convert import DF2DB as alg 

2 import pandas as pd 
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3 import numpy as np 

4 data = np.random.randint(1, 100, size=(4, 4)) 

5 dataFrame = pd.DataFrame(data_4x4, columns=['Item1', 'Item2', 

'Item3', 'Item4'])→֒ 

6 obj = alg.DF2DB(dataFrame) 

7 obj.convert2UtilityDatabase(oFile='utilityDB.csv') 

8 print('Runtime: ' + str(obj.getRuntime())) 

9 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

10 print('Memory (USS): ' + str(obj.getMemoryUSS())) 

9.6 Understanding the Statistical Details 

The dbStats sub-sub-package in the extras sub-package of PAMI provides 

users statistical details about a utility database. This functionality is essential for 

understanding the properties and characteristics of the database, which can be 

crucial for various data analysis tasks. The statistical details provided by dbStats 

include: 

1. Database size 

2. Total number of items in a database 

3. Minimum, average, and maximum lengths of the transactions 

4. Minimum, average, and maximum utility value of a transaction 

5. Standard deviation of transactional sizes 

6. Variance in transaction sizes 

7. Sparsity 

8. Frequencies of the items 

9. Distribution of transactional lengths 

10. Distribution of items’ utility values 

Here is an example of how to use the dbStats to obtain the statistics: 

Program 3: Deriving the Statistical Details of Utility Database 

1 from PAMI.extras.dbStats import UtilityDatabase as stat 

2 

3 obj = stat.UtilityDatabase("utilityDatabase.csv") 

4 obj.run() 

5 obj.printStats() 

6 obj.plotGraphs() 
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9.7 Variants of Utility Databases 

9.7.1 Temporal Utility Database 

A temporal utility database [2] generalizes the basic (transactional) utility database 

by ordering the transactions with respect to a timestamp. The time gap between 

all the transactions remains constant in the utility database; we call that database a 

uniform temporal utility database. If the time gap between the transactions varies 

in the utility database, we call that database a nonuniform temporal utility database. 

One can convert any transactional utility database into a temporal utility database 

by simply concatenating the timestamp at the beginning of the transaction. 

Overall, the format of a transaction in a temporal utility database is 

. timestamp〈sep〉item1〈sep〉 · · · : totalUtility : utility1〈sep〉 · · ·

Example 9.5 If the delimiter is a tab, a utility database shown in Table 9.1c can 

be converted into a temporal utility database as follows: 

1 Bread Jam Butter:300:100 50 150 

2 Bread Book Pen:150:50 40 60 

3 Jam Butter:200:150 50 

4 Bread Jam Butter Pen:270:100 50 100 20 

5 Book Pen:80:60 20 

9.7.2 Geo-referenced Transactional Utility Database 

A geo-referenced transactional utility database [3] contains items with spatial 

information, such as points, lines, and polygons. Overall, the format of a transaction 

in a geo-referenced transactional utility database is 

coordinates1〈sep〉coordinates2〈sep〉coordinates3〈sep〉 · · ·  :  totalUtili  ty .: 

utility1〈sep〉utility2〈sep〉utility3〈sep〉 · · · . 

A sample geo-referenced transactional utility database with a tab delimiter is 

POINT(0 1) POINT(2 1) POINT(1 0):4:1 2 1 

POINT(0 1) POINT(1 0) POINT(1 2):10:2 6 2 

POINT(2 1) POINT(1 2) POINT(1 1) POINT (1 5):8:1 4 2 1 

POINT(0 1) POINT(1 0) POINT(1 1) POINT (1 5):10:1 6 1 1 

POINT(0 1) POINT(1 1) POINT(1 5) POINT(1 6):20:6 6 10 2 

POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5):15:1 1 6 6 

POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5):6:2 2 1 1
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9.7.3 Geo-referenced Temporal Utility Database 

A geo-referenced temporal utility database is a temporal utility database containing 

items with spatial information, such as points, lines, and polygons. Overall, the 

format of a transaction in a geo-referenced temporal utility database is 

t imestamp〈sep〉coordinates1〈sep〉coordinates2〈sep〉coordinates3〈sep〉 · · · :. 

totalUtility : utility1〈sep〉utility2〈sep〉utility3〈sep〉 · · · . 

A sample geo-referenced temporal utility database with a tab delimiter is 

1 POINT(0 1) POINT(2 1) POINT(1 0):4:1 2 1 

2 POINT(0 1) POINT(1 0) POINT(1 2):10:2 6 2 

3 POINT(2 1) POINT(1 2) POINT(1 1) POINT(1 5):8:1 4 2 1 

4 POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5):10:1 6 1 1 

5 POINT(0 1) POINT(1 1) POINT(1 5) POINT(1 6):20:6 6 10 2 

6 POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5):15:1 1 6 6 

7 POINT(0 1) POINT(1 0) POINT(1 1) POINT(1 5):6:2 2 1 1

9.8 Conclusion

This chapter has provided a comprehensive overview of utility databases, covering 

both their theoretical foundations and practical applications. We started with a 

formal definition of utility databases, explaining how transactions are structured and 

identified through set theory. Next, we examined the practical aspects of storing and 

managing these databases on computing devices, including the rules for formatting 

and storing transactions. We also explored methods for generating synthetic utility 

databases, essential for testing and benchmarking data mining algorithms. Addi-

tionally, we discussed techniques for converting structured dataframes into utility 

databases, broadening the data analysis scope. Finally, we analyzed how to derive 

and interpret statistical details of utility databases, enhancing our understanding of 

their properties and optimizing their usage. 
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Chapter 10 

Pattern Discovery in Utility Databases 

Abstract This chapter explores the analytical process of mining high utility 

patterns from utility databases, emphasizing the significance and extraction of 

meaningful patterns based on their utility. It introduces key concepts, such as utility 

calculation for items and patterns within transactions, and discusses the challenge 

of large search space in pattern mining. Techniques like the EFIM algorithm are 

highlighted to discover high utility patterns efficiently. Additionally, the chapter 

extends to high utility frequent pattern mining, which integrates both utility and 

support constraints to refine pattern discovery by excluding infrequent but high 

utility patterns. The HUIM algorithm is also demonstrated with a practical Python 

implementation, providing a robust framework for mining utility databases and 

uncovering critical insights for real-world applications. 

10.1 Introduction 

The previous chapter provided a comprehensive overview of utility databases, 

covering their construction, practical representation, and methods for deriving 

statistical insights. This chapter focuses on the analytical dimension, extracting and 

analyzing meaningful patterns within a utility database. 

This chapter delves into the following topics: 

1. High utility pattern discovery: We will define the notion of high utility patterns 

that might exist in a utility database. 

2. High utility frequent pattern discovery: This subsection describes the model 

of finding high utility frequent patterns in a utility database. 

Chapter 9 introduced the foundational concepts of utility databases, including 

key terms such as “pattern,” “transaction,” and “utility database.” We will continue 

using these terms consistently throughout this chapter to streamline the discussion 

and minimize redundancy. For readers who may have missed the previous chapter, 

we recommend reviewing at least Sect. 9.2 to familiarize themselves with the 

essential concepts and terminologies. 
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10.2 High Utility Patterns 

High utility patterns [1] are an essential class of regularities that can be identified 

within the utility databases. This section delves into finding high utility patterns in 

detail, emphasizing their importance for effectively mining and analyzing patterns 

related to user preferences and activities. Knowledge of high utility patterns is 

essential for uncovering critical relationships within the data and serves as the basis 

for more advanced pattern mining techniques. 

10.2.1 Basic Model 

We introduce the model of high utility patterns based on the terminology of the 

utility database described in Sect. 9.2. Examples are illustrated using the data in 

Table 9.1. 

Definition 10.1 (Utility of an Item in a Transaction) The utility of an item jk . 

in a transaction Ti ., denoted as u(jk, Ti)., represents the product of its external and 

internal utility values. That is, u(jk, Ti) = eu(jk) × f (jk, Ti).. 

Example 10.1 Continuing with the previous example, the utility (or income) 

of an item Bread in the first t ransaction, i.e., u(Bread, T1) = eu(Bread) ×

f (Bread, T1) = 50 × 2 = 100 Rs .. 

Definition 10.2 (Utility of a Pattern in a Transaction) The utility of a pattern X 

in a transaction Ti . is denoted as u(X, Ti) = �jk∈Xu(jk, Ti). if X ⊆ Ti .. 

Example 10.2 The set of items “Bread” and “Jam,” i.e., {Bread, Jam}.,  is  a  

pattern. The utility (or income)  of {Bread, Jam}. in T1 ., u({Bread, Jam}, T1) =

u(Bread, T1) + u(Jam, T1) = 100 + 50 = 150 Rs .. 

Definition 10.3 (Utility of a Pattern in a Database) The utility of a pattern X in 

the database UD, denoted as u(X) = �Ti∈g(X)u(X, Ti)., where g(X).,  is  the  set  of  

transactions containing X. 

Example 10.3 In Table 9.1, {Bread, Jam}. has appeared in the transactions whose 

t ids  are 1 and 4. Therefore, g({Bread, Jam}) = {T1, T4}..  The  utility (or income ) 

of {Bread, Jam}. in each of these transactions, i.e., u({Bread, Jam}, T1) =

150. and u({Bread, Jam}, T4) = 150.. Therefore, the utility (or income)  o  f  

{Bread, Jam}. in the entire database, i.e., u({Bread, Jam}) = 150 + 150 =

300 Rs .. 

Definition 10.4 (High Utility Pattern) A pattern X is a high utility pattern if its 

u(X) ≥ minUtil ., where minUtil represents the user-specified minimum utility 

value. A high utility pattern X is expressed as X [utility = u(X)]..
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Example 10.4 If the user-specified minUtil = 250., then the pattern 

{Bread, Jam}. is a high utility pattern because u({Bread, Jam}) ≥ minUtil .. 

This pattern is expressed as {Bread, Jam} [utility = 300].. 

10.2.2 Search Space 

The space of items in a utility database raises an itemset lattice. This lattice 

represents the search space of high utility pattern mining. Thus, the search space 

size is 2n − 1,.where n represents the total number of items in a database. This vast 

search space followed the inability to employ the Apriori property to reduce the 

search space, making the high utility pattern mining a computationally expensive 

task. To make high utility pattern mining practicable on huge databases, its mining 

algorithms employ different upper-bound utility measures, such as total utility, 

remaining utility, and local utility, to reduce the search space considerably . 

10.2.3 Finding High Utility Patterns 

Several algorithms, such as EFIM, HMiner, and UPGrowth, were described in 

the literature to find high utility patterns. Although no universally acceptable best 

algorithm exists for finding these patterns in any utility database, most researchers 

utilize the EFIM as it was generally found to be faster than the other algorithms. 

Below is a sample Python script for finding high utility patterns using the EFIM 

algorithm available in the PAMI package. 

Program 1: High Utility Pattern Discovery Using EFIM 

1 from PAMI.highUtilityPattern.basic import EFIM as alg 

2 obj = alg.EFIM(iFile='Utility_T10I4D100K.csv', minUtil=10000, 

sep='\t')→֒ 

3 obj.mine() #start the mining process 

4 obj.save('utilityPatterns.txt') #save the patterns 

5 utilityPatternsDF= obj.getPatternsAsDataFrame() 

6 print('# patterns: ' + str(len(utilityPatternsDF))) 

7 print('Runtime: ' + str (obj.getRuntime())) 

8 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

9 print('Memory (USS): ' + str(obj .getMemoryUSS()))
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10.3 High Utility Frequent Patterns 

Since the basic model of high utility patterns determines a pattern’s interestingness 

without considering its support within the data, uninteresting patterns with very 

low support may be generated as high utility patterns. Many high utility patterns 

were uninteresting, often appearing infrequently in the data. To prune the high 

utility patterns that have appeared infrequently in the data, the researchers extended 

the basic model of high utility pattern mining to find high utility frequent patterns 

[2] by considering additional constraints, namely minimum support (minSup). We 

now describe the extended model of high utility frequent patterns and describe the 

process of finding them. 

10.3.1 Basic Model 

Definition 10.5 (Support of a Pattern) Let P ⊆ J . be a pattern. The support of P . 

in a utility database UD . is defined as 

. sup(P ) =
freq(P )

|UD|
,

where freq(P ). denotes the frequency of pattern P . in UD ., and |UD|. represents the 

total number of transactions in the database. 

Example 10.5 In Table 9.1, the high utility pattern {Bread, Jam}. has appeared in 

the transactions whose t ids  are 1 and 4. Thus, the frequency of {Bread, Jam}. is 2. 

The support of {Bread, Jam}., i.e., sup({Bread, Jam}) = 2
5

= 0.4(= 40%).. 

Definition 10.6 (High Utility Frequent Pattern) A high utility pattern P is 

considered to be a high utility frequent pattern if s(P ) ≥ minSup ., where minSup 

represents the user-specified minimum support. A high utility frequent itemset P is 

expressed as P [support = s(P ), utility = u(P )].. 

Example 10.6 If minSup = 0.3., then the high utility pattern {Bread, Jam}. is 

said to be a high utility frequent pattern because s({Bread, Jam}) ≥ minSup .. 

This pattern is expressed as {Bread, Jam} [support = 0.4, utility = 300].. 

10.3.2 Search Space 

The search space of high utility frequent pattern mining is 2n − 1., the same as that 

of the high utility pattern mining. We can effectively reduce the search space using 

the anti-monotonic property of the support measure. Overall, high utility frequent 

pattern mining is computationally less expensive than the high utility pattern mining.
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10.3.3 Finding High Utility Frequent Patterns 

An efficient algorithm, namely high utility itemset mining (HUIM), has been 

described in the literature to find high utility frequent patterns. Below is a sample 

Python script for finding high utility frequent patterns using the HUIM algorithm 

available in the PAMI package. 

Program 2: High Utility Frequent Pattern Discovery Using HUIM 

1 from PAMI.highUtilityFrequentPattern.basic import HUFIM as alg 

2 obj = alg.HUFIM(iFile='Utility_T10I4D100K.csv', minUtil=10000, 

minSup=500, sep='\t')→֒ 

3 obj.mine() 

4 obj.save('utilityFrequentPatternsAtMinSup.txt') 

5 utilityFPDF= obj.getPatternsAsDataFrame() 

6 print('Total No of patterns: ' + str(len(utilityFPDF))) 

7 print('Runtime: ' + str(obj. getRuntime())) 

8 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

9 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

10.4 Conclusion 

In this chapter, we explored the analytical dimension of utility databases by focusing 

on high utility pattern discovery and its various extensions. High utility patterns are 

essential for uncovering significant relationships within data, enabling the extraction 

of patterns based on their utility rather than their frequency alone. We introduced 

the basic model for high utility patterns, highlighting how the utility of items and 

patterns is calculated in individual transactions and across the entire database. 

We discussed the importance of employing upper-bound utility measures to 

reduce computational complexity and demonstrated how the EFIM algorithm can 

efficiently find high utility patterns. In the second part of the chapter, we explored 

the concept of high utility frequent patterns, an extension that incorporates both 

utility and frequency constraints. This approach allows for the discovery of valuable 

and frequent patterns, thus refining the results by eliminating infrequent patterns 

that may not be of practical significance. The chapter concluded with a Python 

implementation of the HUIM algorithm to find high utility frequent patterns.
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Chapter 11 

Sequence Databases: Representation, 
Creation, and Statistics 

Abstract Sequence databases, an extension of transactional databases, store 

ordered collections of transactions, making them invaluable for applications in 

healthcare, e-commerce, and web analytics. These databases structure transactions 

sequentially, often based on time or customer behavior, to reveal patterns that can 

drive socioeconomic development. This chapter introduces sequence databases 

by defining their mathematical representation through set theory, followed by an 

exploration of practical storage and implementation techniques. It details methods 

for generating synthetic sequence databases, which facilitate benchmarking and 

algorithm testing, and explains how to convert dataframes into sequential databases 

for broader analysis. Additionally, the chapter introduces statistical procedures for 

extracting critical insights, such as item frequencies and sequence length variations, 

from sequence databases. By combining theoretical foundations with practical 

applications, this chapter equips readers with essential tools for managing and 

analyzing sequential data, setting the stage for advanced data mining and analysis 

techniques. 

11.1 Introduction 

A structured certain binary sequential database, or simply a sequence database, is 

a variant of a transactional database, where transactions are grouped and ordered 

based on a metric, say t imestamp  or customer identif ier .. Many real-world 

applications, such as healthcare, weblogs, and e-commerce, naturally produce 

transactional databases that can be represented as a sequence database. Useful 

information that can empower the end users to achieve socioeconomic development 

lies hidden in this data. 

This chapter covers the following key aspects of sequence databases: 

1. Theoretical Representation: The formal definition of a sequence database using 

set theory 

2. Practical Representation: How computer systems implement and store 

sequence databases 
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3. Synthetic Database Creation: Techniques for generating synthetic sequence 

databases for testing and benchmarking 

4. Dataframe Conversion: Methods to convert structured dataframes into sequen-

tial databases for broader data analysis applications 

5. Database Statistics: How to derive statistical details about a sequence database 

11.2 Theoretical Representation 

A sequence represents an ordered collection of transactions. A sequential database 

[1] represents a collection of sequences. Formally: 

Let O = {o1, o2, · · · , on}, n ≥ 1,. be a set of items (or objects). Let G ⊆ O . 

be a pattern (or an itemset). A pattern containing k number of items is a k-pattern. 

Let |G|. denote the cardinality of a pattern, i.e., |G| = k .. Without loss of generality, 

let us assume there exists a total order on objects ≻., say lexicographical order. 

A sequence, denoted as sa, a ≥ 1,. is an ordered list of itemsets. That is, sa =

{G1,G2, · · · ,Gp}, p ≥ 1.. A sequence sa . is said to be an α .-sequence if it contains 

a α . number of items, i.e., α = |Gx |∀Gx ∈ sa .. A sequence database, denoted as 

SDB,. is a list of sequences. That is, SDB = {s1, s2, · · · , sq} = ∪
q

sid=1ssid ,. where 

q ≥ 1. and sid ≥ 1. denotes the sequence identifier. The size (or cardinality)  of  a  

sequence database, denoted as |SDB| = q,. where q represents the total number of 

sequences in a database. 

Example 11.1 Let O = {a, b, c, d, e, f, g}. be a set of items. The set of items 

a and b, i.e., {a, b}. (or ab, in short), is a pattern. This pattern contains two 

items. Henceforth, it is a 2-pattern with the cardinality of 2 (= |ab|)..  Le  t  a ≻

b ≻ b ≻ c ≻ d ≻ e ≻ f ≻ g . be the lexicographical order of items. A 

sequence s1 = 〈 ab, c, ef 〉. represents the sequential occurrence order of three 

patterns. This sequence contains five distinct items. Hence, it is a 5-sequence. A 

hypothetical hourly sales transactional database containing these five items is shown 

in Table 11.1a. This database can be shown as a sequence database as in Table 11.1b. 

This sequence database contains four sequences. Henceforth, the size of SDB, i.e., 

|SDB| = 4.. 

11.3 Practical Representation 

A sequential database is usually stored as a file on a computer. To properly create 

and manage this file, follow these rules: 

• One Sequence per Line: Each line in the file represents a single sequence. The 

line number implicitly acts as the sequence identifier (sid), so it is not explicitly 

stored in the file to save space and reduce processing costs.
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Table 11.1 Hypothetical transactional database of a supermarket 

(a) Hypothetical hourly sales data (b) Sequence database 

Hour TID Items Hour TID Items 

1 1 ab 3 8 d 

1 2 c 3 9 abde 

1 3 def 3 10 ac 

2 4 ad 4 11 ab 

2 5 cd 4 12 c 

2 6 af 4 13 aeg 

3 7 bc 4 14 df 

sid Sequences 

1 〈 ab, c, de f 〉. 

2 〈 ad, cd, a f 〉. 

3 〈 bc, d, abde, a c〉. 

4 〈 ab,  c,  aeg, df 〉. 

• Patterns Separated by a Delimiter: The patterns in a sequence are separated by 

a colon. Users cannot overwrite this delimiter. 

• Unique Items per Pattern: Each item should appear only once within a pattern. 

However, an item can appear any number of times in a sequence. 

• Items Separated by a Delimiter in a Pattern: Items in a pattern are separated 

by a delimiter, such as a space or tab. The PAMI algorithms use a tab as the 

default delimiter, but users can choose other delimiters like commas or s paces. 

Overall, the format of a sequence in a sequential is 

. item1〈sep〉item2〈sep〉item3 : item1〈sep〉item2 : · · ·

Example 11.2 If the delimiter is a tab, the sequential database shown in 

Table 11.1b would look like this: 

a b:c:d e f 

a d:c d:a f 

b c:d:a b d e:a  c  

a b:c:a e g:d f 

11.4 Creating Synthetic Sequence Databases 

The PAMI package offers a powerful and flexible tool for generating synthetic 

sequential databases tailored to various needs. This capability is invaluable for 

testing and developing algorithms in data mining and related fields. Users can 

customize the database to suit their specific requirements, including the number 

of transactions, the total number of items, and the average transaction length. 

To illustrate the creation of a synthetic sequential database, consider the follow-

ing sample code.
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Program 1: Generating Synthetic Sequential Database 

1 from PAMI.extras.syntheticDataGenerator import 

SequentialDatabase as db→֒ 

2 obj = db.SequentialDatabase( databaseSize=100000, 

avgItemsPerPatterns=10, avgPatternsPerSequence=10, 

numItems=1000, sep='\t')

→֒

→֒ 

3 obj.create() 

4 obj.save('sequentialDatabase.csv') 

5 #read the generated sequences into a dataframe 

6 sequentialDataFrame=obj.getSequences() 

7 #stats 

8 print('Runtime: ' + str (obj.getRuntime())) 

9 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

10 print('Memory (USS): ' + str(obj. getMemoryUSS())) 

11.5 Deriving a Sequence Database from a Dataframe 

The PAMI package enables users to convert a dataframe into a sequence database, 

which is ideal for transaction-based data analysis. Below is a Python code snippet 

illustrating how to use PAMI for this conversion: 

Program 2: Converting a Dataframe into a Utility Database 

1 from PAMI.extras.convert import DF2DB as alg 

2 import pandas as pd 

3 import numpy as np 

4 data = np.random.randint(1, 100, size=(4, 4)) 

5 dataFrame = pd.DataFrame(data, columns=['Item1', 'Item2', 

'Item3', 'Item4'])→֒ 

6 

7 customerID= np.random.randint(1, 3, size=(4, 1)) 

8 customerIDdataFrame = pd.DataFrame(customerID, 

columns=['customerID'])→֒ 

9 

10 dataFrame = pd.concat([customerIDdataFrame, dataFrame], 

axis=1)→֒ 

11 

12 obj = alg .DF2DB(dataFrame)
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13 

14 obj.convert2SequenceDatabase(oFile='sequentialDatabase.csv', 

condition='>=', value=20)→֒ 

15 print('Runtime: ' + str(obj.getRuntime())) 

16 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

17 print('Memory (USS): ' + str (obj.getMemoryUSS())) 

11.6 Knowing the Statistical Details 

The stats sub-sub-package in the extras sub-package of PAMI provides users 

with statistical details about a sequential database. This functionality is essential 

for understanding the properties and characteristics of the database, which can be 

crucial for various data analysis tasks. The statistical details provided by stats 

include: 

1. Database size 

2. Total number of items in a database 

3. Minimum, average, and maximum lengths of the sequences 

4. Standard deviation of sequence sizes 

5. Variance in sequence sizes 

6. Sparsity 

7. Frequencies of the items 

8. Distribution of transactional lengths 

Here is an example of how to use the dbStats to obtain the statistics: 

Program 2: Deriving the Statistical Details 

1 from PAMI.extras.stats import SequentialDatabase as stat 

2 

3 obj = stat.SequentialDatabase("sequentialDatabase.csv") 

4 obj.run() 

5 obj.printStats() 

6 

7 obj.plotGraphs() 
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11.7 Conclusion 

This chapter has provided a comprehensive overview of sequence databases, from 

their theoretical underpinnings to practical applications. We began with a formal 

definition of sequence databases, detailing how sequences are structured and 

identified using set theory. We then explored the practical aspects of how these 

databases are stored and managed on computing devices, including the rules for 

formatting and storing transactions. 

We also discussed methods for generating synthetic sequence databases, which 

are crucial for testing and benchmarking data mining algorithms. Finally, we 

examined how to derive and interpret statistical details of sequential databases to 

better understand their properties and optimize their usage. 

Understanding these concepts and techniques equips users with the tools to man-

age, analyze, and leverage sequential databases in various real-world applications. 

The combination of theoretical knowledge and practical skills discussed here lays 

the foundation for advanced data analysis. 
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Chapter 12 

Pattern Discovery in Sequence Databases 

Abstract Sequential pattern mining is a powerful analytical tool used to uncover 

significant patterns within ordered data, enabling insights into recurring trends and 

behaviors. This chapter delves into the discovery of frequent sequence patterns 

in sequential databases, a process valuable across domains such as e-commerce, 

bioinformatics, and web usage analysis. We begin with foundational definitions 

and introduce the concept of sequence support as a measure of pattern significance. 

Leveraging the minimum support constraint, we discuss strategies to reduce search 

space and examine the well-known GSP algorithm to facilitate efficient pattern 

discovery. A practical implementation using the GSP algorithm offers insights into 

memory and runtime considerations critical for large datasets. This chapter equips 

readers with the algorithms needed to perform effective sequence pattern mining by 

combining theoretical foundations with practical applications, thereby enhancing 

data-driven decision-making in complex sequential datasets. 

12.1 Introduction 

The previous chapter provided a comprehensive overview of sequential databases, 

covering their construction, practical representation, and methods for deriving 

statistical insights. This chapter focuses on the analytical dimension, extracting 

and analyzing meaningful patterns, especially frequency sequence patterns, within 

sequential data. 

Chapter 10 introduced the foundational concepts of sequential databases, includ-

ing key terms such as “pattern,” “sequence,” and “sequential database.” We will 

continue using these terms consistently throughout this chapter to streamline the 

discussion and minimize redundancy. For readers who may have missed the previ-

ous chapter, we recommend reviewing at least Sect. 11.2 to familiarize themselves 

with the essential concepts and terminologies. 
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12.2 Frequent Sequence Patterns 

12.2.1 Basic Model 

Definition 12.1 Let sp = 〈A1, A2, · · · , Au〉. and sq = 〈B1, B2, · · · Bu · · ·Bv〉., 

where p �= q . and 1 ≤ u ≤ v.. We say that sp . is contained (or occurs) in Sq ., 

i.e., sp ⊑ sq ., if and only if there exist integers 1 ≤ h1 ≤ h2 ≤ · · · ≤ hu ≤ v . such 

that A1 ⊆ Bh1 , A2 ⊆ Bh2 , · · · , Au ⊆ Bhu .. 

Example 12.1 Let sx = 〈ab, c〉. be a sequence. This sequence is contained in 

〈ab, c, def 〉., which is s1 . in Table 11.1b. Henceforth, sx . is a subsequence of s1 ., 

denoted as sx ⊑ s1..We can also state sx . occurs in s1 . for simplicity purpose. 

Definition 12.2 (The Support of a Sequence) The support of a sequence sp . in a 

sequence database SDB is defined as the number of sequences that contain sp,. and 

is denoted by sup(sp).. That is, sup(sp) = |s|s ⊑ sp ∧ s ∈ SDB|.. Please note that 

the support of a sequence can also be expressed in percentage of |SDB|.. 

Example 12.2 Continuing the previous example, the sequence sx . occurs in s1 . and 

s4 . of Table 11.1b. Henceforth, the support of sx ., i.e., sup(sx) = |{s1, s4}| = 2.. 

Definition 12.3 (A Frequent Sequence Pattern [1]) A sequence sp . is said to a 

frequent sequence pattern if sup(sp) ≥ minSup,. where minSup represents the 

user-specified minimum support va lue. 

Example 12.3 If the user-specified minSup = 2., then the sequence sx . is said to 

be a frequent sequence pattern as sup(sx) ≥ minSup .. Similarly, another sequence, 

sy = 〈ab, d〉., which occurs in s1 . and s4 . of Table 11.1b and has support of 2, is also 

said to be a frequent sequence pattern as sup(sy) ≥ minSup .. 

12.2.2 Search Space 

The sequence lattice is derived from the space of itemsets and serves as the search 

space for mining sequential patterns. Here, the search space for sequence pattern 

mining is quantified as nk
., where k signifies the maximum sequence length and n 

denotes the aggregate count of items in the database. One can effectively reduce this 

colossal search space using the anti-monotonic property of the minSu p constraint. 

12.2.3 Mining Algorithm 

The literature describes several algorithms, such as PrefixSpan [2], SPAM [3], 

and SPADE [4], for finding frequent sequence patterns in the data. Although no 

universally acceptable best algorithm exists for finding these patterns in a sequential
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database, most researchers utilize the GSP algorithm, which was generally faster 

than the other algorithms. Below is a sample Python script for finding frequent 

sequence patterns using the GSP algorithm available in the PAMI package. 

Program 1: Frequent Sequence Pattern Discovery Using GSpan 

obj = alg.GSP('airDatabase.txt', minSup, '\t') 

obj.mine() 

# Retrieve discovered patterns and resource usage 

Patterns = obj.getPatterns() 

print("Total number of Frequent Sequence Patterns:", 

len(Patterns)) 

# Display memory and runtime statistics 

memUSS = obj.getMemoryUSS() 

print("Total Memory in USS:", memUSS) 

memRSS = obj.getMemoryRSS() 

print("Total Memory in RSS", memRSS) 

runTime = obj.getRuntime() 

print("Total ExecutionTime in ms:" , runTime) 

12.3 Conclusion 

This chapter examined the process of identifying frequent sequence patterns in 

sequential databases, highlighting their significance in fields like market analysis, 

web usage mining, and bioinformatics. We defined vital concepts such as sequence 

support and frequent patterns and explored methods to efficiently reduce search 

space using the minimum support constraint. We have also described a procedure to 

find the frequent sequence patterns using the GSP algorithm. This chapter provided 

theoretical insights and practical tools, equipping researchers and practitioners to 

leverage sequential pattern mining for meaningful insights and predictive analytics 

in complex data environments. 
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Chapter 13 

Mining Symbolic Sequences 

Abstract Symbolic sequence databases are widely used in fields such as bioinfor-

matics, where analyzing DNA, RNA, and protein sequences is critical for under-

standing diseases and developing new drugs. This chapter presents an overview 

of symbolic sequence databases, focusing on their mathematical, practical repre-

sentations and methods for generating and analyzing synthetic sequence data. We 

also explore techniques for discovering frequent contiguous patterns in symbolic 

sequences, essential for uncovering hidden relationships and insights within large 

datasets. The chapter introduces the PAMI library, which implements powerful 

tools such as the PositionMining algorithm for mining frequent contiguous 

patterns. These tools, along with database statistics and synthetic data generation 

capabilities, provide a comprehensive framework for researchers to analyze and 

extract meaningful patterns from symbolic sequence data. 

13.1 Intro duction 

This chapter introduces symbolic sequence databases, which store continuous 

sequences of symbols or characters—data crucial for bioinformatics applications, 

such as analyzing DNA, RNA, and protein interactions to understand diseases and 

aid in drug development better. The key topics covered in this chapter are: 

1. Theoretical Representation: Establishes a formal definition of a symbolic 

sequence database using set theory. 

2. Practical Representation: Describes how sequence databases are implemented 

and stored in computer systems, focusing on the practical aspects of data 

handling. 

3. Synthetic Database Creation: Explains methods for generating synthetic sym-

bolic sequence databases, allowing researchers to test and benchmark algorithms 

in controlled environments. 

4. Database Statistics: Outlines statistical approaches to derive insights from 

sequence databases, including details on symbolic sequence length distributions, 

data variation, and other statistical properties. 
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5. Pattern Discovery: Details techniques for identifying frequent contiguous pat-

terns within symbolic sequence data, essential for detecting biologically signifi-

cant motifs or anomalies. 

These sections offer theoretical foundations and practical tools, guiding readers 

through essential concepts and methods for working with symbolic sequence 

databases. 

13.2 Theoretical Representation 

A symbolic sequence is an ordered collection of symbols (or characters). Formally: 

let � = {A,B, · · · , Z}. represent the set of symbols (also known as the alphabets). 

A sequence S is defined as an ordered arrangement of these symbols, expressed a s 

S = 〈s1, s2, . . . , sn〉., where each si ∈ � ., 1 ≤ i ≤ n.. 

Example 13.1 Let� = {A,C,G, T }.denote the set of DNA alphabets. A sequence 

Seq = AT GT CAT G. can be formed by arranging these symbols from � .. 

This notation is foundational in bioinformatics, where symbolic sequences like 

DNA, RNA, or protein sequences are studied to uncover meaningful patterns and 

biological insights. 

13.3 Practical Representation 

A symbolic sequence is typically stored as a file on a computer. To ensure 

consistency and readability, follow these guidelines when creating and managing 

the file: 

• Enter Sequence in Line: Write the entire sequence of symbols on a single line 

without breaks. 

• No Delimiter Between the Symbols: Do not insert any delimiters between 

consecutive symbols in the sequence. 

Thus, the format of a sequence in this representation is 

. symbol1symbol2symbol3 · · · symboln

Example 13.2 An example of a symbolic sequence representing a DNA sequence 

S = ACT GCAT GCT AT GCAT GC ..
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13.4 Creating Synthetic Symbolic Sequence Databases 

The PAMI package provides a robust and adaptable tool for generating synthetic 

symbolic sequential databases, ideal for testing and developing algorithms in fields 

like data mining. Users can customize these databases to meet specific needs, such 

as defining the length of a sequence and the total number of symbols, making them 

invaluable resources for benchmarking and experimentation. 

The following example code demonstrates how to create a synthetic symbolic 

sequential database using PAMI: 

Program 1: Generating Synthetic Symbolic Sequential Database 

from PAMI.extras.syntheticDataGenerator \ 

import symbolicSequenceDatabase as db 

obj = db.symbolicSequenceDatabase( 

sequenceSize=100000, 

numberOfSymbols=10 

) 

obj.create() 

obj.save('symbolicSequentialDB.csv') 

#read the generated sequences into a dataframe 

symbolicSequentialDataFrame=obj.getTransactions() 

#stats 

print('Runtime: ' + str (obj.getRuntime())) 

print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

print('Memory (USS): ' + str(obj. getMemoryUSS())) 

The above code snippet creates a symbolic sequence database of 100,000 

symbols using 10 distinct symbols. The generated data is saved to a CSV file and 

loaded into a dataframe for further analysis. Additionally, runtime and memory 

statistics are printed, providing useful performance metrics for evaluation. 

In specific real-world scenarios, users are interested in generating synthetic DNA 

and RNA sequences. PAMI library contains programs that facilitate the creation of 

synthetic DNA or RNA sequences for users. 

Program 2: Generating Synthetic DNA/RNA Database 

from PAMI.extras.syntheticDataGenerator \ 

import NucleotideSequence as db 
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obj = db.NucleotideSequence( 

sequenceLength=100000, 

gcContent=0.5 

) 

obj.create() 

obj.save('symbolicSequentialDB.csv') 

#read the generated sequences into a dataframe 

symbolicSequentialDataFrame=obj.getTransactions() 

#stats 

print('Runtime: ' + str(obj.getRuntime())) 

print( 'Memory (RSS): ' + str(obj.getMemoryRSS())) 

print('Memory (USS): ' + str(obj. getMemoryUSS())) 

13.5 Knowing the Statistical Details 

The dbStats sub-sub-package within the extras package of PAMI allows users 

to obtain essential statistical details about a symbolic sequential database. This 

functionality is particularly useful for understanding database properties, which 

can be critical for various data analysis tasks. The dbStats package provides the 

following statistics: 

1. Total Number of Symbols: Counts the distinct symbols within the database. 

2. Total Size of a Sequence: Calculates the overall length of the sequence. 

3. Symbol Frequencies: Determines how frequently each symbol has appeared. 

Here is an example demonstrating how to use dbStats to retrieve these s tatistics: 

Program 3: Deriving Statistical Details 

from PAMI.extras.stats import \ 

SymbolcSequentialDatabase as stat 

# Create an instance of the statistical analysis class 

obj = stat.SymbolcSequentialDatabase("symbolicSequentialDB.csv") 

# Run the statistical analysis 

obj .run()
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# Print the statistical details 

obj.printStats() 

# Plot graphs for visual analysis 

obj .plotGraphs() 

In this example, the code loads a previously generated symbolic sequence 

database from a CSV file. It then runs a statistical analysis to gather and print 

the database’s statistical details. Additionally, it visualizes the data through graphs, 

allowing for an insightful look at symbol distributions and sequence characteristics. 

13.6 Frequent Contiguous Patterns 

13.6.1 Basic Model 

Definition 13.1 (Contiguous Pattern) A contiguous pattern P ⊆ S . is formally 

defined as 〈sj , sj+1, . . . , sj+k−1〉., where 1 ≤ j ≤ j + k − 1 ≤ n.. This definition 

implies that the elements of P . occupy consecutive positions in S .without any gaps, 

preserving the order of occurrences of symbols in the original sequence. If |P | = k ., 

then P . is called a k-length contiguous pattern. 

Example 13.3 Let P = AT G. be a contiguous pattern such that P ⊆ S .. Since P . 

contains three alphabets (or |P | = 3.), it is called a 3-length contiguous pattern. 

Definition 13.2 (Support of a Pattern) The number of distinct occurrences of P . 

in S . represents its support and is denoted as support(P ).. 

Example 13.4 The pattern P . appears in S . at three locations whose index positions 

are (5,7), (10,12), and (14,16). Thus, the support of P . in S ., i.e., support(P ) = 3.. 

Definition 13.3 (Frequent Contiguous Pattern) A contiguous pattern P . is said to 

be a frequent contiguous pattern if support(P ) ≥ minSup., where minSup is a 

hyper-parameter that represents the user-specified minimum support v alue. 

Example 13.5 If the user-specified minSup = 2., P . is a frequent contiguous pattern 

as support(P ) ≥ minSup.. 

Definition 13.4 (Problem Definition) Given a symbolic sequence database S . and 

the user-specified minimum support (minSup), the problem definition of frequent 

contiguous pattern mining is to find the complete set of frequent contiguous patterns 

in S . that have support no less than the minsup value.
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13.6.2 Mining Algorithm 

Several algorithms have been developed to identify frequent contiguous patterns 

in symbolic sequence data. The PAMI library implements the PositionMining 

algorithm. The following code demonstrates using PositionMining to discover 

frequent contiguous patterns. 

Program 4: Frequent Contiguous Pattern Discovery 

from PAMI.contiguousFrequentPattern.basic \ 

import PositionMining as alg 

# Initialize PositionMining algorithm 

obj = alg.PositionMining(iFile='symbolicSequentialDB.csv',\ 

minSup=100, delimiter='\t') 

obj.mine() 

# Retrieve discovered patterns and resource usage 

Patterns = obj.getPatterns() 

print("#Frequent Sequence Patterns:",len(Patterns)) 

# Display memory and runtime statistics 

memUSS = obj .getMemoryUSS() 

print("Total Memory in USS:", memUSS) 

memRSS = obj.getMemoryRSS() 

print("Total Memory in RSS:", memRSS) 

runTime = obj.getRuntime() 

print("Total Execution Time in ms:", runTime) 

In this example, the PositionMining algorithm is initialized with an input file 

containing symbolic sequence data (symbolicSequentialDB.csv), a minimum 

support threshold (minSup=100), and a specified delimiter. The algorithm then 

mines for frequent contiguous patterns, which are stored in Patterns. Memory 

usage and runtime statistics are also displayed, providing insights into the algo-

rithm’s resource requirements. 

13.7 Conclusion 

This chapter explored symbolic sequence databases, which are essential for bioin-

formatics, data mining, and pattern discovery applications. We covered the theoret-
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ical and practical representations of symbolic sequences, techniques for synthetic 

database generation, and methods for analyzing database statistics. Additionally, 

we introduced contiguous pattern discovery, a powerful approach for identifying 

frequently occurring patterns within sequence data, which can reveal significant 

insights in large datasets.



Chapter 14 

Pattern Discovery in Fuzzy Databases 

Abstract This chapter introduces fuzzy databases as an advanced method for 

handling and analyzing data with uncertainty, distinguishing them from traditional 

transactional databases. By utilizing fuzzy membership functions, fuzzy databases 

transform utility databases into representations where data is stored with degrees of 

certainty, enabling more flexible analysis. The chapter discusses theoretical repre-

sentations of fuzzy databases, practical considerations for database implementation, 

and methods for identifying fuzzy frequent patterns. 

14.1 Introduction 

This chapter provides an in-depth exploration of fuzzy databases, a type of database 

that supports data representation with varying levels of uncertainty, unlike tradi-

tional transactional or temporal databases where data is precisely defined. Fuzzy 

databases are derived from utility databases using fuzzy membership functions to 

capture the nuanced and uncertain nature of certain data. The chapter covers the 

following three core topics: 

1. Theoretical Representation: Defines fuzzy transactional databases with formal 

mathematical structures, including fuzzy membership functions, fuzzy terms, 

and set theory. 

2. Practical Representation: Describes the storage and organization of fuzzy 

databases in computing systems, focusing on the practical aspects of data 

handling. 

3. Pattern Discovery: Outlines techniques to identify and analyze frequent fuzzy 

patterns within these databases. 

This chapter combines theoretical insights with practical approaches, providing 

readers with essential tools and methodologies for working with fuzzy databases 

and uncovering valuable patterns in uncertain data environments. 
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14.2 Theoretical Representation 

Let I = {i1, i2, . . . , im}., where m ≥ 1., be a finite set of m. distinct items 

(or attributes). A utility database, UD ., is an ordered collection of transactions 

paired with unique transaction identifiers. Each transaction in this database con-

tains items and their corresponding quantities. Specifically, we define UD =

{(1, T1), (2, T2), . . . , (ts, Tts)},. where ts ∈ R
+

. represents a timestamp, and each 

transaction Tq ∈ UD .,  for 1 ≤ q ≤ ts ., is a subset of I . that contains multiple items 

with associated purchase quantities viq . for each item iq ∈ Tq .. 

Example 14.1 Let I = {a, b, c, d, e, f }. be the set of items (or sensors measuring 

the concentrations of an air pollutant, say PM2.51 ). A hypothetical utility database 

generated from recording the items in I . is shown in Table 14.1. This database 

contains 12 transactions. Each transaction in this database is associated with a 

transaction identifier ( t id .). In the first transaction, (1, {a : 60, b : 65, d : 55})., 1. 

represents the transactional identifier, and {a : 60, b : 65, d : 55}. represents the 

transaction containing items and their associated quantities. This means that the 

sensors a, b,. and d . have recorded the PM2.5 values of 60, 65, and 55, respectively. 

Other sensors have not recorded any value for PM2.5. 

Definition 14.1 Let {1, 2, · · · , h}. be the set of fuzzy terms for a membership 

function µ.. The set of linguistic variables that can be drawn from the membership 

function µ. for an item i ., denoted as Ri = {Ri1, Ri2, · · · , Rih}., where Rik, 1 ≤ k ≤

h., is the fuzzy term mapped to an item i .. 

Example 14.2 The set of fuzzy terms for the utility database shown in 

Table 14.1 are G, M, UH4SG, UH, VUH, and H (see Fig. 14.1a). Conse-

quently, the set of fuzzy terms for an item a . in Table 14.1, i.e., Ra =

{a.G, a.M, a.UH4SG, a.UH, a.V UH, a.H }.. The same can be stated for 

the remaining items in the table. 

Definition 14.2 Let viq . denote the quantitative value of an item i . in the transaction 

Tq .. The fuzzy set, denoted as fiq ., is the set of fuzzy terms with their membership 

Table 14.1 Running example: utility database 

t id itemset tid itemset 

1 a : 60, b : 65, d : 55. 7 a : 45, b : 60, c : 45, e : 25. 

2 a : 30, b : 70, e : 60. 8 a : 55, d : 60. 

3 a : 55, c : 20. 9 a : 60, b : 65, d : 30. 

4 a : 60, b : 65, d : 55. 10 a : 45, d : 40, f : 40. 

5 a : 55, d : 60, f : 30. 11 a : 60, b : 55, c : 65, d : 55. 

6 b : 55, c : 40, e : 45. 12 b : 45, e : 65.

1 PM2.5 represents the particulate matter that has a diameter of 2.5 micrometers or smaller. 



14.3 Practical Representation 137

Fig. 14.1 Graphical representation of fuzzy membership function for PM2.5 . 

degrees (fuzzy values) transformed from the quantitative value viq . of the linguistic 

variable i . by the membership functions µ. as 

. fiq = µi(viq)

=
f viq1

Ri1
+

f viq2

Ri2
+ · · · +

f viqh

Rih

, (14.1) 

where h. is the number of fuzzy terms of i . transformed by µ., Ril . is the l .th fuzzy 

term of i ., f viql . is the membership degree (fuzzy value) of viq . of i . in the l .th fuzzy 

term Ril ., and f viql ∈ [0, 1].. 

Example 14.3 Consider the item a . in Table 14.1. The quantity of a . in the first 

transaction is 60. Thus, va1 = 60.. Based on the membership function shown in 

Fig. 14.1, the fuzzy set of a . in T1 ., i.e., 

. fa1 =
0

a.G
+

0

a.M
+

0

a.UH4SG
+

0.5

a.UH
+

0.5

a.V UH
+

0

a.H
=

0.5

a.UH
+

0.5

a.V UH
.

For simplicity, we represent fa1 = {a.UH : 0.5, a.V UH : 0.5}.. The fuzzy 

transactional database [1, 2] generated from Table 14.1 is shown in Table 14.2. 

14.3 Practical Representation 

A fuzzy transactional database is typically stored as a file on a computer. To ensure 

consistency and readability, follow these guidelines when creating and managing 

the file: 

• Enter Transaction in Line: Each transaction is written as a line. 

• Appearance of Fuzzy Terms: Fuzzy terms appear at the beginning of the line. 

A delimiter, say tab space, separates the fuzzy terms.
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Table 14.2 Fuzzy temporal database generated from Table 14.1 

t id  itemset 

1 a.UH : 0.5, a.V UH : 0.5, b.UH : 0.25, b.V UH : 0.75, d.UH : 0.75, d.V UH : 0.25. 

2 a.M : 0.25, a.UH4G : 0.75, b.V UH : 1, e.UH : 0.5, e.V UH : 0.5. 

3 a.UH : 0.75, a.V UH : 0.25, c.M : 0.75, c.UH4G : 0.25. 

4 a.UH : 0.5, a.V UH : 0.5, b.UH : 0.25, b.V UH : 0.75, d.UH : 0.75, d.V UH : 0.25. 

5 a.UH : 0.75, a.V UH : 0.25, d.UH : 0.5, d.V UH : 0.5, f.M : 0.5, f.UH4G : 0.5. 

6 b.UH : 0.75, b.V UH : 0.25, c.UH4G : 0.66, c.UH : 0.33, e.UH4G : 0.33, e.UH : 0.66. 

7 a.UH4G : 0.33, a.UH : 0.66, b.UH : 0.5, b.V UH : 0.5, c.UH4G : 0.33, c.UH : 66,. 

e.M : 0.5, e.UH4G : 0.5. 

8 a.UH : 0.75, a.V UH : 0.25, d.UH : 0.5, d.V UH : 0.5. 

9 a.UH : 0.5, a.V UH : 0.5, b.UH : 0.25, b.V UH : 0.75, d.M :, d.UH4G :. 

10 a.UH4G : 0.33, a.UH : 0.66, d.UH4G : 0.66, d.UH : 0.33, f.UH4G : 0.66,. 

f.UH : 0.33. 

11 a.UH : 0.5, a.V UH : 0.5, b.UH : 0.75, b.V UH : 0.25, c.UH : 0.25, c.V UH : 0.75,. 

d.UH : 0.75, d.V UH : 0.25. 

12 b.UH4G : 0.33, b.UH : 0.66, e.UH4G : 0.33, e.UH : 0.66. 

• Appearance of Fuzzy Values: Fuzzy values appear after the fuzzy terms. A 

delimiter, say tab space, separates the fuzzy value. The delimiter for fuzzy terms 

and fuzzy values must remain the same. 

• Delimiter for Fuzzy Terms and Fuzzy Values: The fuzzy terms and fuzzy 

values in a transaction are separated with a colon mark (:) as a delimiter. This 

delimiter is fixed and cannot be overwritten by the users. 

• Neglecting TID Information: Since each row represents the t id  information of 

a transaction, we do have to store the t id  information in t he file. 

Thus, the format of a sequence in this representation is 

. f uzzT erm1f uzzT erm2 · · · f uzzT ermn : f uzzV al1f uzzV al2 · · · f uzzV aln.

Example 14.4 An example of the first transaction appearing in the fuzzy transac-

tional database shown in Table 14.2 is a.UH a.VUH b.UH b.VUH d.UH d.VUH:0.5 

0.5 0.25 0.75 0.75 0.25. 

14.4 Fuzzy Frequent Patterns 

14.4.1 Basic Model 

Definition 14.3 (The Support of a Fuzzy Term) Let FT D′
. denote the fuzzy 

transactional database generated from the UD  using the fuzzy membership function
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µ..  The  support of the transformed fuzzy terms, denoted sup(Ril)., is the summation 

of scalar cardinality of the fuzzy values of fuzzy term Ril ., which can be defined as 

.sup(Ril) =
∑

Ril⊆Tq∧Tq∈FT D′

f vilq . (14.2) 

Example 14.5 Table 14.2 shows the fuzzy transactional database generated for 

the utility database shown in Table 14.1. The item d.UH . appears in the trans-

actions whose timestamps are 1, 4, 5, 8, 10., and 11. Thus, the support of item 

d.UH ., i.e., sup(Rd.UH .)= f vd.UH1
+ f vd.UH4

+ f vd.UH5
+ f vd.UH8

+ f vd.UH10
+

f vd.UH11
.=0.75 + 0.75 + 0.5 + 0.5 + 0.33 + 0.75.=3.58.. 

Definition 14.4 (The Support of a Fuzzy k-Pattern) The support of fuzzy k-

pattern (k ≥ 2)., denoted as sup(X)., is the summation of scalar cardinality of the 

fuzzy values for X, which can be defined as 

.sup(X) = {X ∈ Ril |
∑

Ril⊆Tq∧Tq∈FT D′

min(f vaql, f vbql), (14.3) 

where a, b ∈ X . and a �= b.. 

Example 14.6 The set of fuzzy terms, {a.UH, d.UH }., is an itemset (or a pattern). 

This pattern contains two items. Therefore, it is a 2-pattern. In Table 14.2,  the  

pattern {a.UH, d.UH }. occurs in the transactions whose transactional identifiers 

are 1, 4, 5, 8, 10., and 11. Thus, the support of {a.UH, d.UH }. in Table 14.2, 

i.e., sup(a.UH, d.UH .)= min(f va.UH1
, f vd.UH1

) + min(f va.UH4
, f vd.UH4

) +

min(f va.UH5
, f vd.UH5

)+min(f va.UH8
, f vd.UH8

)+min(f va.UH10
, f vd.UH10

)+

min(f va.UH11
, f vd.UH11

) = min(0.5, 0.75) + min(0.75, 0.5) + min(0.75, 0.5) +

min(0.75, 0.5) + min(0.66, 0.33) + min(0.5, 0.75) = 0.5 + 0.5 + 0.5 + 0.5 +

0.33 + 0.5 = 2.83.. 

Definition 14.5 (Fuzzy Frequent Pattern X) A pattern X is called a fuzzy 

frequent pattern if its support is no less than the user-specified minimum support 

(minSup). In other words, X is a fuzzy frequent pattern if sup(X) ≥ minSup .. 

Example 14.7 If the user-specified minSup = 2., then the fuzzy pattern 

{a.UH, d.UH }. is said to be a fuzzy frequent pattern because sup({a.UH, d.UH }) ≥

minSup .. The above pattern provides useful information that the sensors a and d 

have frequently observed unhealthy levels of PM2.5 .. 

Definition 14.6 (Problem Definition) Given the quantitative transactional (or util-

ity) database (UD), the user-specified fuzzy membership functions ( µ.), and min-

imum support (minSup) value, the problem of fuzzy frequent pattern mining 

involves discovering all patterns in FT D′
. that have sup(X) ≥ minSup ..
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14.4.2 Mining Algorithm 

Several algorithms have been developed to identify fuzzy frequent patterns in fuzzy 

transactional database. The PAMI library implements the FFI-Miner [2] algorithm. 

The following code demonstrates using FFI-Miner to discover fuzzy frequent 

patterns. 

Program 1: Fuzzy Frequent Patterns in Fuzzy Transactional Database 

from PAMI.fuzzyFrequentPattern.basic \ 

import FFIMiner as alg 

inputFile = 'Fuzzy_T10I4D100K.csv' 

minimumSupportCount = 100 

obj = alg.FFIMiner(iFile=inputFile, \ 

minSup=minimumSupportCount, sep='\t') 

obj.mine() 

# Retrieve discovered patterns and resource usage 

obj.save('fuzzyfrequentPatterns.txt') 

Patterns = obj.getPatterns() 

print("Total number of Fuzzy Frequent Patterns:",len(Patterns)) 

# Display memory and runtime statistics 

memUSS = obj.getMemoryUSS() 

print("Total Memory in USS:", memUSS) 

memRSS = obj.getMemoryRSS() 

print("Total Memory in RSS:", memRSS) 

runTime = obj.getRuntime() 

print("Total Execution Time in ms:", runTime) 

In this example, the FFI-Miner algorithm is initialized with an input file 

containing fuzzy transactional database (Fuzzy_T10I4D100K.csv), a minimum 

support threshold (minSup=100), and a specified delimiter. The algorithm then 

mines for fuzzy frequent patterns, which are stored in Patterns. Memory usage 

and runtime statistics are also displayed, providing insights into the algorithm’s 

resource requirements.
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14.5 Other Types of Fuzzy Databases 

This chapter primarily covered fuzzy transactional databases and how to mine them. 

However, other forms of fuzzy databases exist in the real world. For example, adding 

the timestamp information to a fuzzy transactional database will result in a fuzzy 

temporal database. Similarly, considering the spatial information of the items in the 

fuzzy transactional (or temporal) database will result in a fuzzy spatio-transactional 

(or spatiotemporal) database. Users can find interesting patterns, such as fuzzy 

periodic-frequent patterns, fuzzy geo-referenced frequent patterns, and fuzzy geo-

referenced periodic-frequent patterns from these databases. 

14.6 Conclusion 

This chapter presented fuzzy databases as a method for managing and analyzing 

data with inherent uncertainty, offering an alternative to traditional transactional 

databases. Using fuzzy membership functions, we can transform utility databases 

into fuzzy transactional databases, allowing data to be represented in degrees rather 

than absolute values. This chapter covered the theoretical and practical frameworks 

for fuzzy databases, including the representation of fuzzy data and techniques 

for mining fuzzy frequent patterns. The implementation code accompanying the 

examples in this chapter can be accessed on our GitHub repository: https://github. 

com/UdayLab/Hands-on-Pattern-Mining/blob/main/chapter14.ipynb. 
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Chapter 15 

Knowledge Discovery in Uncertain 
Databases 

Abstract This chapter focuses on uncertain transactional databases (UTDB), 

which represent collections of transactions containing items with associated proba-

bilities, reflecting the inherent uncertainty in real-world data. We formally define 

uncertain transactions, patterns, and their expected support in the context of 

uncertain data. The chapter also covers techniques for creating synthetic uncertain 

transactional databases, converting structured data into UTDBs, and deriving statis-

tical details to understand the data’s characteristics better. A significant portion of 

the chapter is dedicated to the challenges of frequent pattern discovery, specifically 

addressing the limitations of the downward closure property in uncertain data and 

introducing algorithms like TUBE-P for efficient pattern mining. Practical Python 

code examples demonstrate how these methods can be implemented to analyze 

uncertain transactional data. 

15.1 Introduction 

An uncertain transactional database is a collection of unordered transactions, 

where each transaction consists of items along with their associated occurrence 

probabilities. This type of data is commonly found in real-world scenarios such 

as sales, healthcare, clickstream analysis, and sensor networks, where uncertainty 

about the presence of items in a transaction is inherent. The diagram in Fig. 15.1 

illustrates how various factors combine to form an uncertain transactional database, 

emphasizing the complex relationships involved. 

Other types of uncertain transactional databases exist, such as uncertain temporal 

databases, uncertain geo-referenced transactional databases, and uncertain utility 

databases, each incorporating different factors. This chapter focuses on introducing 

uncertain transactional databases and exploring methods for discovering interesting 

patterns within them, considering the inherent uncertainty in the data. 

This chapter addresses the following key aspects of uncertain transactional 

databases: 
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Fig. 15.1 Illustration of factors contributing to the creation of an uncertain transactional database 

1. Theoretical Representation: The formal definition of an uncertain transactional 

database using set theory. 

2. Practical Representation: Implementing and storing uncertain transactional 

databases within computer systems. 

3. Synthetic Database Creation: Methods for generating synthetic uncertain 

transactional databases used for testing and benchmarking. 

4. Dataframe Conversion: Techniques for transforming structured dataframes into 

uncertain transactional databases, enabling broader data analysis applications. 

5. Database Statistics: Approaches for deriving statistical insights from an uncer-

tain transactional database. 

6. Finding Frequent Patterns: A formal definition of frequent patterns and a 

detailed procedure for discovering them in uncertain transactional databases. 

15.2 Theoretical Representation 

Let I = {i1, i2, . . . , in}., where n ≥ 1.,  be  a  set  of  items.  Let X ⊆ I . represent an 

itemset (or a pattern). A pattern that contains k . items is called a k .-pattern. 

An uncertain transaction, denoted tt id ., consists of a transaction identifier ( t id .) 

and a pattern Y .. That is, tt id = (tid, Y )., where Y ⊆ I . is the set of items in the 

pattern. Importantly, each item ik ∈ Y . is associated with an existential probability 

P(ik, tt id) ∈ (0, 1)., which represents the likelihood of the presence of item ik . in the 

uncertain transaction tt id .. 

An uncertain transactional database [1], denoted UT DB ., is a collection of such 

uncertain transactions: 

. UT DB = {t1, t2, . . . , tm}, m ≥ 1.

Each transaction in the database is associated with a transaction identifier, the 

corresponding pattern, and the probabilities for each item in the pattern. This 

structure allows for the representation of uncertainty regarding the presence of items 

in each transaction.
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Table 15.1 Uncertain 

transactional database 
tid Transaction 

1 b(0.1) c(0.8) d(0.9) 

2 a(0.7) c(0.7) d(0.1) 

3 a(0.8) b(0.6) c(0.4) 

4 c(0.3) d(0.4) e(0.9) 

Example 15.1 Let I = {a, b, c, d, e}. be a set of fixed sensors (or items). A 

hypothetical uncertain transactional database constituting these items is shown in 

Table 15.1.  The  set  of  items  a . and c., i.e., {a, c}. (or ac., in short) is a pattern. This is 

a 2-pattern as it contains only two items. 

15.3 Practical Representation 

An uncertain transactional database is usually stored as a file on a computer. To 

properly create and manage this file, follow these four rules: 

• One Transaction per Line: Each line in the file represents a single transaction. 

The line number implicitly acts as the transaction identifier (tid), so it is not 

explicitly stored in the file to save space and reduce processing costs. 

• Order of Occurrences: All items occur first in a transaction. Next, the uncer-

tainty values appear in the same order as the items have occurred. Items and their 

uncertainty values are separated with a fixed delimiter, a colon mark. 

• Unique Items per Transaction: Each item should appear once per line. The 

items can be listed in any order within the line. 

• A Delimiter Separates Items and Uncertain Values: Items and their uncertain 

values in a transaction are separated by a delimiter, such as a space or tab. The 

PAMI algorithms use a tab as the default delimiter, but users can choose other 

delimiters like commas or s paces. 

Overall, the format of a transaction in an uncertain transactional database is 

. item1〈sep〉item2〈sep〉 · · · : value1〈sep〉value2〈sep〉 · · ·

Example 15.2 If the delimiters are a tab and a colon mark, the uncertain transac-

tional database shown in Table 15.1 would look like this: 

b c d:0.1 0.8 0.9 

a c d:0.7 0.7 0.1 

a b c:0.8 0.6 0.4 

c d e:0.3 0.4 0.9
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15.4 Creating Synthetic Uncertain Transactional Database 

The PAMI package offers a powerful and flexible tool for generating uncertain 

synthetic transactional databases tailored to various needs. This capability is 

invaluable for testing and developing algorithms in data mining and related fields. 

Users can customize the database to suit their specific requirements, including the 

number of transactions, the total number of items, and the average transaction 

length. 

To illustrate the creation of an uncertain synthetic transactional database, con-

sider the following sample code. This example generates a database with 100,000 

transactions, each containing an average of 10 items from a set of 1,000 possible 

items: 

Program 1: Generating Synthetic Uncertain Transactional Database 

from PAMI.extras.syntheticDataGenerator \ 

import UncertainTransactionalDatabase as db 

obj = db.UncertainTransactionalDatabase( 

databaseSize=100000, 

avgItemsPerTransaction=10, 

numItems=1000, 

sep='\t' 

) 

obj.create() 

obj.save('uncertainTDB.csv') 

#read the generated transactions into a dataframe 

transactionalDataFrame=obj.getTransactions() 

#stats 

print('Runtime: ' + str(obj.getRuntime())) 

print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

print('Memory (USS): ' + str(obj. getMemoryUSS())) 

15.5 Converting a Dataframe into an Uncertain 

Transactional Database 

The PAMI package provides a convenient method to convert a dataframe into 

an uncertain transactional database, particularly useful for transaction-based data 

analysis. The following Python code demonstrates how to perform this conversion:
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Program 2: Dataframe to Uncertain Transactional Database Conversion 

from PAMI.extras.convert import DF2DB as alg 

import pandas as pd 

import numpy as np 

# Creating a 100 x 4 DataFrame with random values 

data = np.random.uniform(0, 1, size=(100, 4)) 

dataFrame = pd.DataFrame(data, 

columns=['Item1', 'Item2', 'Item3', 'Item4'] 

) 

# Converting the DataFrame to an uncertain transactional database 

# by considering values greater than or equal to a threshold (0.6) 

obj = alg .DF2DB(dataFrame) 

obj.convert2UncertainTransactionalDatabase( 

oFile='UTDB.csv', 

condition='>=', thresholdValue=0.6 

) 

# Printing runtime and memory usage statistics 

print('Runtime: ' + str(obj.getRuntime())) 

print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

print('Memory (USS): ' + str(obj.getMemoryUSS())) 

15.6 Obtaining Statistical Details 

The dbStats sub-package in PAMI’s extras module allows users to retrieve 

statistical details about an uncertain transactional database. These statistics are 

important for understanding the underlying properties of the database, which can 

inform various data analysis tasks. The statistical details provided by dbStats 

include: 

1. Database size 

2. Total number of items in the database 

3. Minimum, average, and maximum lengths of the transactions 

4. Standard deviation of transaction sizes 

5. Variance in transaction sizes 

6. Sparsity of the database
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7. Frequencies of the items in the database 

8. Distribution of transaction lengths 

Below is an example demonstrating how to use dbStats to derive these statistics 

from an uncertain transactional database: 

Program 3: Deriving the Statistical Details 

from PAMI.extras.dbStats import \ 

UncertainTransactionalDatabase as stat 

# Load the uncertain transactional database 

obj = stat.UncertainTransactionalDatabase("UTDB.csv") 

# Run the statistics generation 

obj .run() 

# Print the calculated statistics 

obj.printStats() 

# Plot graphical representations of the statistics 

obj.plotGraphs() 

15.7 Frequent Pattern Discovery 

15.7.1 Basic Model 

Definition 15.1 (Expected Support of Pattern X in a Transaction) The exis-

tential probability of X in tt id ., denoted as P(X, tt id)., represents the product of 

corresponding existential probability values of all items in X when these items are 

independent. That is, 

. P(X, tt id) =
∏

∀ij ∈X

P(ij , tt id).

The expected support of X in the uncertain transactional database UT  DB, denoted 

as expSup(X)., is given by
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. expSup(X) =

m∑

t id=1

P(X, tt id),

where m is the total number of transactions in the database. 

Example 15.3 Consider the pattern ac, which occurs in transactions with t ids  of 2 

and 3. The existential probability of ac in the second transaction is 

. P(ac, t2) = P(a, t2) × P(c, t2) = 0.7 × 0.7 = 0.49.

Similarly, the existential probability of ac in the third transaction i s 

. P(ac, t3) = 0.32.

The expected support of ac in the entire database i s 

. expSup(ac) = 0.49 + 0.32 = 0.81.

Definition 15.2 (Frequent Pattern X) A pattern X is considered frequent if its 

expected support satisfies the condition: 

. expSup(X) ≥ minSup,

where minSup represents the user-specified minimum support t hreshold. 

Example 15.4 Suppose the user specifies a minimum support value of minSup =

0.6.. In that case, the pattern ac is considered frequent since its expected support, 

expSup(ac) = 0.81., is greater than or equal to the minimum support threshold. 

15.7.2 Search Space 

The set of items in a database forms an itemset lattice. This lattice represents the 

search space for pattern discovery in certain and uncertain transactional data. The 

search space size is 2n − 1., where n represents the total number of items in the 

database. 

15.7.3 Inability of Apriori Property 

Although the search space for frequent pattern discovery is the same for certain and 

uncertain data, the computational cost for finding these patterns differs. The reason 

is as follows:
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The frequent patterns discovered from certain data satisfy the downward closure 

property. This property plays a key role in reducing the computational costs of 

finding frequent patterns in certain data. However, the frequent patterns discovered 

from uncertain data do not satisfy the downward closure property. This increases the 

search space, leading to a higher computational cost in finding frequent patterns in 

uncertain data. To address this challenge, mining algorithms employ various upper-

bound constraints to help find frequent patterns in uncertain data. 

15.7.4 Finding Frequent Patterns 

Several algorithms, such as PUF [2], TUBE-P [3], and TUBE-S [3], have been 

proposed in the literature to find frequent patterns in uncertain transactional 

databases. While there is no universally accepted best algorithm, TUBE-P is widely 

used for its relatively faster performance than other algorithms. Below is a sample 

Python script demonstrating how to use the TUBE-P algorithm from the PAMI 

package to discover frequent patterns in an uncertain transactional database. 

Program 1: Frequent Pattern Discovery Using TUBE-P 

from PAMI.uncertainFrequentPattern.basic \ 

import TubeP as alg 

# Input file and minimum support count for frequent pattern mining 

inputFile = 'uncertainTransaction_T10I4D100K.csv' 

minSupport = 300 

# Create an instance of the TubeP algorithm 

obj = alg.TubeP(iFile=inputFile, 

minSup=minSupport, sep='\t') 

# Mine frequent patterns 

obj.mine() 

# Save the discovered frequent patterns to a file 

obj.save('frequentPatterns.txt') 

# Convert the frequent patterns into a DataFrame 

frequentPatternsDF = obj.getPatternsAsDataFrame() 

# Display the number of frequent patterns and resource usage 

print('#Patterns: ' + str(len(frequentPatternsDF))) 

print('Runtime: ' + str(obj.getRuntime()))
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print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

print('Memory (USS): ' + str(obj. getMemoryUSS())) 

15.8 Conclusion 

In this chapter, we explored the concept of uncertain transactional databases, 

highlighting their structure, the challenges in handling uncertainty, and the methods 

to mine frequent patterns from such data. We introduced the formalization of uncer-

tain transactions and patterns, the process of generating synthetic uncertain data, 

and the conversion of structured dataframes into transactional databases. We also 

discussed the key statistical measures necessary for understanding the properties 

of uncertain transactional data. Given the complexity of uncertain data, we outlined 

the limitations posed by the inability to apply the downward closure property, which 

increases computational costs. We highlighted algorithms like TUBE-P that utilize 

upper-bound constraints to discover frequent patterns effectively. We demonstrated 

how to apply these techniques to real-world scenarios by providing practical Python 

code examples. In conclusion, while uncertain transactional data presents unique 

challenges, the methods and tools discussed offer valuable solutions for efficient 

analysis and pattern discovery, with future potential for optimization and application 

across various domains. 
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Chapter 16 

Finding Useful Patterns in Graph 
Databases 

Abstract Graph transactional databases are essential for modeling complex rela-

tionships in various real-world applications, such as social networks, bioinformatics, 

and cheminformatics. These databases can be categorized as either certain or uncer-

tain, depending on whether their edge connections are deterministic or probabilistic. 

This chapter provides a comprehensive exploration of graph transactional databases, 

covering both theoretical and practical representations. It introduces formal def-

initions of graph structures using set theory, details various data storage formats 

(traditional and compressed), and explains procedures for converting between these 

formats. Additionally, it presents methodologies for generating synthetic graph 

databases and deriving statistical insights. Furthermore, the chapter discusses fre-

quent subgraph pattern discovery, a crucial task for uncovering recurring structures 

within graph data. The use of the PAMI package is highlighted throughout, offering 

practical implementations for database creation, visualization, and analysis. 

16.1 Introduction 

Graph data structures are versatile tools for representing relationships in real-

world data applications. They are instrumental in scenarios where entities and their 

interactions are at the forefront, such as in social networks, chemical compounds, 

or protein interactions. 

A graph database is a collection of graphs, enabling structured analysis and 

querying of the represented relationships. Graph databases are typically categorized 

into two types based on the certainty of their edge connections: 

• Graph Certain Binary Transactional Database (or Graph Transactional 

Database) [1]: In this type of database, the relationships (edges) between nodes 

are deterministic. Specifically, the probability of an edge existing between any 

two nodes is either 0 or 1. This deterministic nature ensures that all connections 

are either confirmed (present) or absent, with no ambiguity.

• Graph Uncertain Binary Transactional Database (or Uncertain Graph 

Transactional Database) [2]: Unlike their certain counterparts, uncertain graph 
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Fig. 16.1 Factors contributing to the creation of certain graph transactional database 

Fig. 16.2 Factors contributing to the creation of uncertain graph transactional database 

transactional databases accommodate uncertainty in relationships. Here, the 

probability of an edge existing between two nodes lies in the range (0, 1). This 

probabilistic approach reflects situations where connections are not definitive but 

are associated with some degree of likelihood. 

Figures 16.1 and 16.2 visually highlight how various factors influence the formation 

of these graph databases, illustrating the distinct characteristics of certainty and 

uncertainty within these data structures. 

This chapter delves into graph transactional databases, focusing on their proper-

ties, representations, and methodologies for uncovering interesting patterns within 

them. The key topics covered in this chapter include: 

1. Theoretical Representation: A rigorous formalization of graph databases using 

set theory, providing a foundation for understanding their structure and compo-

nents. 

2. Practical Representation: Details on how graph databases are stored and 

implemented in computer systems, emphasizing practical aspects of data rep-

resentation and retrieval. 

3. Synthetic Graph Database Creation: Techniques for generating synthetic 

graph databases, essential for testing algorithms, benchmarking methods, and 

evaluating performance in controlled environments. 

4. Graph Statistics: How to derive statistical details about a graph database. 

5. Finding Frequent Subgraph Patterns: Formal definitions and algorithms for 

identifying frequent subgraphs, which are graph patterns appearing recurrently 

across multiple graphs in the database. 

6. Finding Top-k Subgraph Patterns: A formal framework and procedures for 

discovering the top-k subgraph patterns, focusing on ranking and retrieving the 

most significant patterns based on predefined criteria.
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16.2 Theoretical Representation 

Definition 16.1 (A Graph) An exact graph is formally defined as 

. G = (V ,E,Lv, Le, Fv, Fe),

where:

• V is the set of vertices (nodes).

• E is the set of edges (connections between nodes).

• Lv . is the set of labels for vertices.

• Le . is the set of labels for edges.

• Fv : V → Lv . maps each vertex to its corresponding label.

• Fe : E → Le . maps each edge to its corresponding label. 

Example 16.1 Let:

• Lv = {A, B, C, D }.: the set of vertex labels

• Le = {1, 2, 3 }.: the set of edge labels

• V = {0, 1, 2, 3 }.: the identifiers of four vertices

• E = {edge(0, 1), edge(0, 2), edge(2, 3), edge(3, 1) }.: the set of edges connecting 

pairs of vertices 

The Graph 1 in Fig. 16.3 represents an exact graph generated using Lv ., Le ., V , and 

E . 

Definition 16.2 (Graph Transactional Database) A graph transactional 

database is a collection of labeled exact graphs. It is denoted as 

. GT D = {G1,G2, . . . ,Gn},

where n is the number of graphs in the database, and each Gi . is an exact graph. 

Example 16.2 The collection of all four graphs illustrated in Fig. 16.3 constitutes 

a graph transactional database. 

Graph 1 

A B 

C D 

1 

2 

2 

1 

Graph 2 

A B 

C D 

1 

23 

Graph 3 

A B 

C 

2 

12 

Graph 4 

A B 

C 

D 

1 

1 

1 

Fig. 16.3 An example of graph transactional database
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16.3 Practical Representation 

A graph transactional database is typically stored as a file on a computer. This 

database can be stored in two primary formats: the traditional format and the 

compressed format. 

The traditional format is the most commonly used representation for storing 

graph databases. In this format, every graph’s identifier, nodes, and edges are written 

on separate lines. However, the main limitation of this format is data redundancy, 

which can increase the memory and runtime requirements of mining algorithms. 

The compressed format, introduced by PAMI researchers, represents each graph 

in a single line, listing nodes first, followed by edges and their labels. Algorithms in 

PAMI are designed to accept graph databases in both formats. 

This subsection describes both formats and explains the procedures for convert-

ing between traditional and compressed formats. 

16.3.1 Traditional Format 

To prepare a graph transactional database in the traditional format, follow these 

rules:

• Beginning a graph: Start each graph with a triplet “t  #  id” on a line, where 

id ∈ (1, n). is an integer representing the graph identifier.

• Storing a vertex: A vertex in a graph is written as a triplet “v vertexID 

vertexLabel” on a line. The  vertexID must be unique within each graph. The 

vertexLabel can appear multiple times in a graph, as multiple vertices can have 

the same label.

• Storing the edges: An edge in a graph is written as “e vertexID_from 

vertexID_to edgeLabel” on a line. The vertexID_from and vertexID_to 

indicate the ve rtices connected by the edge. 

The overall structure of the traditional format is as follows: 

t # graphID 

v vertexID_1 vertexLabel 

... 

e vertexID_1 vertexID_2 edgeLabel

...

Example 16.3 The Graphs 1 and 2 from Fig. 16.3 can be represented in the 

traditional format as follows: 

t  #  0  

v  0  A

v 1 B

v 2 C
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v  3  D  

e  0  1  1  

e  1  3  2  

e  3  2  2  

e 2 0 1

t # 1

v 0 A

v 1 B

v 2 C

v 3 D

e 0 1 1

e 0 2 3

e 1 3 2

16.3.2 Compressed Format 

To prepare a graph transactional database in a compressed format, follow these 

rules:

• Each line represents a graph: The information in a graph is stored in a single 

line.

• Order of storing vertices and edges: The vertices first appear in a line, followed 

by the edges. A fixed delimiter, a colon mark, separates the vertices and edges.

• Vertex pairs: In a line, each vertex is represented as a pair containing vertex 

identifier (vID) and vertex label (vL).

• Edge triplets: In a line, each edge is represented as a triplet containing vertex 

identifier, vertex identifier, and edge label (eL). 

Overall, the compressed format of representing a graph transactional database is 

vID_1 vL_1 vID_2 vL_2...:vID_1 vID_2 eLB_1 vID_1 vID_4 eL_2...

Example 16.4 The Graphs 1 and 2 in Fig. 16.3 are written as follows: 

0  A  1  B  2  C  3  D  :0  1  1  1  3  2  3  2  2  2  0  1  

0 A 1 B 2 C 3 D:0 1 1 0 2 3 1 3 2

16.3.3 Procedures for Converting Traditional into Compressed 

Format 

The PAMI library provides functionality to transform a graph transactional database 

from a traditional format into a compressed format and vice versa.
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Program 1: Converting the Format 

1 from PAMI.extras.graph \ 

2 import GraphConvertor as gc 

3 

4 obj = gc.GraphConvertor(iFile='Chemical_340.txt') 

5 obj.convertTraditional2Compressed() 

6 #obj.convertFromCompressed2Traditional() 

7 obj.save('compressedGraphData.csv') 

8 

9 # Stats 

10 print('Runtime: ' + str(obj.getRuntime())) 

11 print('Memory (RSS): ' + str(obj.getMemoryRSS())) 

12 print('Memory (USS): ' + str(obj.getMemoryUSS())) 

16.4 Creating Synthetic Graph Transactional Database 

The PAMI package provides a flexible and efficient tool for generating graph 

transactional databases, which can be customized to meet specific needs. This 

feature is handy for testing and developing algorithms in data mining and related 

fields. 

To demonstrate how to create a synthetic graph transactional database, the 

following sample code can be used: 

Program 2: Generating Synthetic Graph Transactional Database 

1 from PAMI.extras.syntheticDataGenerator import 

certainGraphTransactions as db→֒ 

2 

3 obj = db.certainGraphTransactions(numGraphs=100, 

avgNumVertices=10, avgNumEdges=6, numVertexLabels=5, 

numEdgeLabels=3, outputFileName='opn.txt', format='old')

→֒

→֒ 

4 obj.generate() 

5 #stats 

6 print('Runtime: ' + str(obj.getRuntime())) 

7 print(' Memory (RSS): ' + str(obj.getMemoryRSS())) 

8 print('Memory (USS): ' + str(obj. getMemoryUSS()))
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16.5 Visualizing the Graph Database 

The PAMI package allows users to view graphs in a graph database. Below is a 

sample Python code for this purpose. 

Program 3: Visualizing the Graph Database 

1 from PAMI.extras.visualize import graphs as vis 

2 objVis = vis.graphDatabase(iFile=' graphTransactionalDB.csv') 

3 objVis.plot() 

16.6 Obtaining Statistical Details 

The stats sub-package in PAMI’s extras module allows users to retrieve statisti-

cal details about a graph database. These statistics are important for understanding 

the underlying properties of the database, which can inform various data analysis 

tasks. The statistical details provided by stats include: 

1. Average number of nodes 

2. Average number of edges 

3. Minimum, average, and maximum number of nodes 

4. Minimum, average, and maximum number of edges 

5. Total number of unique vertex labels 

6. Total number of unique edge labels 

Below is an example demonstrating how to use stats to derive these statistics 

from an uncertain transactional database: 

Program 4: Deriving the Statistical Details 

1 from PAMI.extras.stats import graphDatabase as alg 

2 

3 # Load the uncertain transactional database 

4 obj = alg.graphDatabase(iFile='Chemical_340.txt') 

5 

6 # Print the calculated statistics 

7 obj.printGraphDatabaseStatistics() 

8 obj.printIndividualGraphStats() 

9
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10 # Plot graphical representations of the statistics 

11 obj .plotEdgeDistribution() 

12 obj. plotNodeDistribution() 

16.7 Frequent Subgraph Pattern Discovery 

16.7.1 Basic Model 

Definition 16.3 (A Subgraph) A subgraph, S in an exact graph, G =

(V ,E,Lv, Le, Fv, Fe). is defined as S = (Vs, Es, Lsv, Lse, Fsv, Fse)., such that 

S ⊑ G., iff Vs ⊆ V . and Es ⊆ E .. A subgraph is a part of the graph. 

Example 16.5 An example of a subgraph, S, is  

t  #  0  

v  0  A  

v 1 B

e 0 1 1

Definition 16.4 (Support of Subgraph Pattern) Support, sup, of a subgraph 

pattern S in a graph transactional dataset D, is defined as 

. sup(S) =
|{g | g ∈ D ∧ S ⊑ g}|

|GT D|
.

It means that the subgraph, S, is isomorphic to some pattern that is a subset of graph 

g, for all such graphs which belong to GT D. It is finally normalized by dividing by 

GT D and keeping its range between 0 and 1. 

Example 16.6 Continuing the above example, the subgraph S appears in three 

graphs (i.e., Graph 1 ( G1 .), Graph 2 ( G2 .), and Graph 4 ( G4 .)) of the graph 

transactional database shown in Fig. 16.3. Thus, the support of S, i.e., sup(S) =

|{G1,G2,G4}|/|GT D| = 3/4 = 0.75.. 

Definition 16.5 (Frequent Subgraph Pattern X) A subgraph pattern S is con-

sidered frequent if its support is no less than the user-specified minimum support 

(minSup) threshold v alue. 

Example 16.7 If the user-specified minSup = 0.5., then S is a frequent subgraph 

as sup(S) ≥ minSup ..
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16.7.2 Finding Frequent Subgraph Patterns 

The literature describes several algorithms for finding frequent subgraph patterns. 

While there is no universally accepted best algorithm, gSpan [1] is widely used due 

to its relatively faster performance than other algorithms. Below is a sample Python 

script demonstrating how to use the gSpan algorithm from the PAMI package to 

discover frequent subgraph patterns in a graph transactional database. 

Program 5: Frequent Subgraph Pattern Discovery Using GSpan 

1 from PAMI.subgraphMining.basic import gspan as alg 

2 obj = alg.GSpan('Chemical_340.txt', minSupport=100) 

3 obj.mine() 

4 frequentGraphs = obj.getFrequentSubgraphs() 

5 memUSS = obj.getMemoryUSS() 

6 print("Total Memory in USS:", memUSS) 

7 memRSS = obj.getMemoryRSS() 

8 print("Total Memory in RSS", memRSS) 

9 run = obj.getRuntime() 

10 print("Total ExecutionTime in seconds:", run) 

11 obj.save('frequentSupgraphs.txt') 

16.7.3 Visualization of the Frequent Subgraphs 

Since a subgraph represents the portion of a graph, one can visualize the generated 

frequent subgraphs using the below-provided Python code. 

Program 6: Visualizing of the Frequent Subgraphs 

1 from PAMI.extras.visualize import graphs as vis 

2 objVis = vis.graphDatabase(iFile=' frequentSupgraphs.txt') 

3 objVis.plot() 
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16.8 Top-k Subgraphs 

Specifying an appropriate minSup value to find frequent subgraphs is a nontrival 

and challenging task in graph mining. When confronted with this problem in the 

real-world applications, researchers tried to tackle it by mining top-k frequently 

occurring subgraphs in a graph transactional database. The motivating reason is that 

specifying k value is much easier than specifying the right minSup value. 

16.8.1 Basic Model 

Definition 16.6 (Top-k Subgraphs) Let P = {S1, S2, · · · , Sz}, z ≥ 1,. be an 

ordered set of all subgraphs that can be generated from a graph transactional 

database (GT D) such that sup(S1) ≥ sup(S2) ≥ · · · sup(Sz).. Let  Q =

{S1, S2, · · · , Sk} ⊆ P, 1 ≤ k ≤ z,. denote the set of k subgraphs that have highest 

support . That is ∀Sx ∈ P, sup(Sx) ≥ max(sup(Sy |∀Sy ∈ P − Q)., where 

1 ≤ x ≤ k ≤ y ≤ z.. 

16.8.2 Finding Top-k Subgraphs 

The PAMI library implements the popular TKG [3] algorithm to find top-k 

subgraphs in a graph transactional database. Below is a sample Python script 

demonstrating how to use the TKG algorithm from the PAMI package to discover 

top-k subgraph patterns in a graph transactional database. 

Program 7: Top-k Subgraphs Using T KG 

1 from PAMI.subgraphMining.topK import tkg as alg 

2 obj = alg.TKG(iFile='Chemical_340.txt',k=100) 

3 obj.mine() 

4 frequentGraphs = obj.getKSubgraphs() 

5 memUSS = obj.getMemoryUSS() 

6 print("Total Memory in USS:", memUSS) 

7 memRSS = obj.getMemoryRSS() 

8 print("Total Memory in RSS" , memRSS) 

9 run = obj.getRuntime() 

10 print("Total ExecutionTime in seconds:", run) 

11 obj.save('frequentTopkSubgraphs.txt') 
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16.8.3 Visualization of the Top-k Subgraphs 

Since a subgraph represents the portion of a graph, one can visualize the generated 

top-k subgraphs using the Python code provided below. 

Program 8: Visualizing the Results 

1 from PAMI.extras.visualize import graphs as vis 

2 objVis = vis.graphDatabase(iFile=' frequentTopkSubgraphs.txt') 

3 objVis.plot() 

16.9 Conclusion 

In this chapter, we explored graph transactional databases and how they help 

represent and analyze complex relationships in data. We examined the difference 

between certain and uncertain graph databases, showing how they capture definite 

and probabilistic connections. We also covered key concepts like storage formats, 

conversion techniques, and tools for generating, visualizing, and analyzing graph 

data. A primary focus was discovering frequent subgraph patterns, which play 

a significant role in spotting recurring structures useful for pattern recognition, 

anomaly detection, and knowledge discovery. With applications in fields like 

social networks, bioinformatics, and chemistry, graph transactional databases are 

a powerful tool for making sense of interconnected data, opening doors for further 

research and innovation. The implementation code accompanying the examples in 

this chapter can be accessed on our GitHub repository: https://github.com/UdayLab/ 

Hands-on-Pattern-Mining/blob/main/chapter16.ipynb. 
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Chapter 17 

Discovering Air Pollution Patterns 
Through the KDD Process 

Abstract Air pollution is a critical global environmental challenge, causing sig-
nificant risks to public health, and ecosystems contributing to climate change. 
Extracting actionable insights from real-world pollution data is crucial for under-
standing and mitigating these risks. This chapter presents a detailed methodology 
for uncovering valuable patterns in air pollution data by applying the Knowledge 
Discovery in Databases (KDD) process. Using over five years of hourly PM2.5 . 

data collected from air quality sensors across Japan, we show how to preprocess, 
transform, and analyze this data using a combination of Python libraries such as 
Pandas, Scikit-learn, and PAMI. We walk through data acquisition, pattern discov-
ery, and visualization, emphasizing how spatial patterns of high pollution areas can 
facilitate location-specific policy decisions. The findings highlight the effectiveness 
of combining data science techniques with environmental data to address global 
challenges. This chapter provides a replicable framework for applying the KDD 
process in various large-scale datasets, demonstrating its relevance to environmental 
monitoring and public health research. 

17.1 Introduction 

The previous sections of this book explored various types of real-world databases 
and the methods used to extract valuable patterns based on user interests. In Part 
3, we focus on integrating the PAMI (PAttern MIning) [1] library with popular 
Python libraries, including Scikit-learn [3], TensorFlow [4], and Keras, to enhance 
knowledge discovery in large datasets. 

One of the most pressing environmental challenges today is air pollution, which 
poses significant threats to human health, ecosystems, and the climate. Numerous 
organizations have deployed extensive networks of air quality sensors to tackle 
pollution, generating vast amounts of data. These datasets contain invaluable 
insights that could guide policymakers and environmental scientists in making data-
driven decisions. However, extracting meaningful information from these datasets 
can be challenging due to the noisy and complex nature of real-world data. 
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This chapter describes the Knowledge Discovery in Databases (KDD) process, a 
systematic method for extracting valuable knowledge from large datasets. Specifi-
cally, we focus on discovering pollution patterns in the PM2.5 . data collected over 
five years from various air quality sensors across Japan [2]. Figure 17.1 visually 
represents the KDD process, outlining the significant steps in identifying pollution 
hotspots and extracting actionable insights. 

Fig. 17.1 The KDD process for discovering PM2.5 . pollution patterns in the data
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17.2 A Step-by-Step Guide to the KDD Process 

KDD involves several key steps, each critical to extracting valuable insights from 
raw data. Below is a step-by-step breakdown of how we apply KDD to air pollution 
data. 

17.2.1 Step 1: Requirements 

In this first step, you must install the necessary Python libraries to facilitate data 
processing, analysis, and pattern discovery. The key libraries we will use are: 

• Pandas: Used for data manipulation and cleaning. This library will help us store 
the pollution data, perform basic analysis, remove unnecessary columns, and 
handle missing data. 

• Scikit-learn: This library will be used for data preprocessing tasks such as impu-
tation (filling in missing values) and other machine learning-related operations. 

• PAMI: The core library for pattern mining. PAMI will help transform the 
dataset into a transactional database, mine frequent patterns, and visualize spatial 
patterns in the data. 

To install these libraries, you can use the following command: 

$ pip install pami scikit-learn pandas 

The experiment uses over five years of hourly PM2.5 . data collected from 
sensors deployed by the Atmospheric Environmental Regional Observation System 
(AEROS). This dataset covers the entire country of Japan. You can download 
the dataset from the following link: https://www.dropbox.com/s/wa8d1sujzlx56hh/ 
ETL_DATA_new.csv. 

17.2.2 Step 2: Selecting the Target Data 

Once the data is downloaded, we load it into a Pandas Dataframe. The dataset 
includes a column labeled timestamp, which records the hourly intervals at which 
the data was collected. Additionally, each air quality sensor is identified by its 
unique location, represented as Point(X, Y )., where X . and Y . are the geographical 
coordinates of the sensor. 

Here is how you can load the data into a dataframe: 

>>> import pandas as pd 

>>> dataset=pd.read_csv('ETL_DATA_new.csv',index_col=0) 

>>> dataset 

The sample data stored in the dataframe is shown in Fig. 17.2. To clean and refine 
the dataset, we first remove the timestamp column and any attributes that do not
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Fig. 17.2 Air pollution dataset 

contain location information (i.e., columns with “Unnamed” in their name). This 
step ensures that we are only working with relevant data. 

>>> dataset.drop('TimeStamp', inplace=True, axis=1) 

>>> sensors=[col for col in dataset if 'Unnamed' in col] 

>>> dataset.drop(columns=sensors, inplace =True, axis=1) 

>>> dataset 

17.2.3 S tep 3: Preprocessing

In this step, we perform several data cleaning and normalization tasks to prepare the 
data for analysis. Specifically, we: 

• Replace invalid or missing values with NaN to mark them for i mputation. 
• Remove sensors (columns) with more than 80% missing data. 
• Use Hot-Deck imputation to fill in the remaining missing values by replacing 

them with values from similar records. 

The following Python code snippet shows how we implement these steps: 

>>> dataset.replace(['None', 'Nan'],np.nan,inplace=True) 

>>> dataset.where(dataset <= 250, np.nan, inplace=True) 

>>> dataset.where(dataset > 0, 0, inplace=True) 

>>> 

>>> threshold = 0.8 * len(dataset) 

>>> dataset = dataset.dropna(thresh=threshold , axis=1) 

>>> dataset = hotDeckImputation(dataset)



17.2 A Step-by-Step Guide to the KDD Process 171

The function for Hot-Deck imputation is defined as follows: 

Program 1: Hot-Deck Imputation 

1 from sklearn.utils import shuffle 

2 def hotDeckImputation(df): 

3 df_imputed = df.copy() 

4 for column in df_imputed.columns: 

5 missing_idx = df_imputed[column].isnull() 

6 non_missing_values = df_imputed.loc[~missing_idx, 

column]→֒ 

7 donor_pool = shuffle(non_missing_values, 

random_state=42).reset_index(drop=True)→֒ 

8 donor_pool_expanded = np.resize(donor_pool.values, 

missing_idx.sum())→֒ 

9 df_imputed.loc[missing_idx, column] = 

donor_pool_expanded →֒ 

10 return df_imputed 

17.2.4 Step 4: Data Transformation 

At this stage, we convert the dataset into a transactional database format for frequent 
pattern mining. PM2.5 . values greater than or equal to 35 are considered hazardous. 
Therefore, we set this as the threshold and convert the dataset into a binary format, 
where timestamps and locations with hazardous pollution levels are represented. 

>>> from PAMI.extras.convert import denseDF2DB as db 

>>> obj = db.denseDF2DB(dataset) 

>>> obj.convert2TransactionalDatabase('TDB.csv','>= ',35) 

17.2.5 Step 5: Pattern Discov ery

Now that we have transformed the data into a transactional format, we apply 
frequent pattern mining algorithms such as FP-growth to identify pollution hotspots. 
These hotspots represent locations where people were frequently exposed to high 
PM2.5 . levels. 

>>> from PAMI.frequentPattern.basic import FPGrowth as ab 

>>> obj = ab.FPGrowth('TDB.csv', 500)
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>>> obj.mine() 

>>> obj.printResults() 

>>> obj.save('FPs.txt') 

17.2.6 Step 6 : Visualization of Patterns 

Once we have discovered the frequent patterns, we visualize their spatial distribu-
tion. This helps us understand the geographical areas with the most consistent high 
pollution levels. 

The following code generates a visualization of the pollution patterns: 

>>> from PAMI.extras.graph import visualizePatterns as fig 

>>> obj = fig.visualizePatterns('FPs.txt', 10) 

>> > obj.visualize(width=1000, height =900)

Figure 17.3 shows the distribution of high pollution levels across Japan, high-
lighting both sporadic pollution events and consistent hotspots. Areas 1 and 2 in 
the figure represent regions with high pollution levels, suggesting that people living 
near these sensors are often exposed to harmful air quality. This repeated exposure 
in specific locations poses significant health risks to the local population. 

On the other hand, Areas 3 and 4 show high pollution levels near individual 
sensors, but with a key difference: The sensors are far apart. While people near each 
sensor are exposed to harmful pollution, these areas are less likely to impact the 
same community, as the sensors are geographically distant. 

These insights are valuable for guiding policy decisions. Areas 1 and 2, with 
concentrated high pollution, should be prioritized for interventions to reduce 

Fig. 17.3 Spatial visualization of the top-10 long frequent pollution patterns
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exposure. In contrast, Areas 3 and 4, despite frequent pollution events, may require 
less urgent action, but further investigation is needed to understand the exposure 
risks fully. This information can help target pollution reduction efforts where they 
are most needed to protect public health. 

17.3 Conclusion 

In this chapter, we demonstrated how the KDD process can be applied to uncover 
pollution patterns in Japan using over five years of PM2.5 . data. By combining 
modern Python libraries such as Pandas, Scikit-learn, and PAMI, we successfully 
transformed raw pollution data into actionable insights through preprocessing, data 
transformation, frequent pattern mining, and spatial visualization. 

The results revealed consistent pollution hotspots that can guide targeted policy 
interventions to reduce air pollution. This methodology underscores the power 
of integrating data science tools with environmental data to address pressing 
global challenges. Future work can expand this approach to other pollutants, apply 
predictive modeling techniques, and extend the framework to different regions, 
further enhancing its impact on global environmental monitoring and public health. 
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Chapter 18 

Discovering Futuristic Pollution Patterns 
Using Forecasting and Pattern Mining 

Abstract This chapter presents a framework for forecasting air pollution levels and 
uncovering hidden patterns using machine learning and frequent pattern mining. 
We analyze over five years of hourly PM2.5 . data from Japan’s Atmospheric 
Environmental Regional Observation System (AEROS). The dataset undergoes 
preprocessing, including handling missing values and normalizing sensor data. A 
long short-term memory (LSTM) model predicts future pollution levels across 
sensors. The forecasted data is then transformed into a transactional database, where 
hazardous pollution levels are identified using a predefined threshold value. The 
FP-growth algorithm is applied to extract recurring pollution patterns, highlighting 
critical pollution hotspots. These insights help policymakers develop effective 
pollution mitigation strategies. 

18.1 Introduction 

Building on the previous chapter, which explored Python-based pattern discovery 
in air pollution time series data, this chapter integrates forecasting techniques. 
We develop a model that predicts pollution levels and extracts meaningful pat-
terns from the forecasted data. Figure 18.1 illustrates the framework for dis-
covering pollution patterns from predicted data. The Python code of exercise is 
accessible at https://colab.research.google.com/github/UdayLab/Hands-on-Pattern-
Mining/blob/main/chapter18.ipynb. 

18.2 Step-by-Step Guide to Discovering Future Pollution 

Patterns 

18.2.1 Step 1: Install Required Libraries 

In this first step, the necessary Python libraries must be installed to facilitate data 
processing, analysis, and pattern discovery. The key libraries we will use are: 
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Fig. 18.1 The framework for identifying futuristic pollution patterns 

• Pandas [2]: Used for data manipulation and cleaning. This library will help us 
store the pollution data, perform basic analysis, remove unnecessary columns, 
and handle missing data. 

• Scikit-learn [4]: This library will be used for data preprocessing tasks such 
as imputation (filling in missing values) and other machine learning-related 
operations. 

• TensorFlow [5]: This library will be used for building the prediction model for 
every sensor in the data. The long short-term memory (LSTM) algorithm is used 
for model building. 

• PAMI [1]: The core library for pattern mining. PAMI will help transform the 
dataset into a transactional database, mine frequent patterns, and visualize spatial 
patterns in the data. 

To install these libraries, you can use the following command: 

$ pip install pami scikit-learn pandas tensorflow 

The experiment uses more than five years of hourly PM2.5 . data collected 
from sensors deployed by the Atmospheric Environmental Regional Observation 
System (AEROS) [3]. This dataset covers the entire country of Japan. The readers 
can download the dataset from the following link: https://www.dropbox.com/s/ 
wa8d1sujzlx56hh/ETL_DATA_new.csv. 

18.2.2 Step 2: Selecting the Target Data 

Once the data is downloaded, we load it into a Pandas DataFrame. The dataset 
includes a column labeled timestamp, which records the hourly intervals at which 
the data was collected. Additionally, each air quality sensor is identified by its 
unique location, represented as Point(X, Y )., where X . and Y . are the geographical 
coordinates of the sensor. 
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Fig. 18.2 Sample air pollution dataset 

Here is how you can load the data into a dataframe: 

>>> import pandas as pd 

>>> dataset=pd.read_csv('ETL_DATA_new.csv',index_col= 0) 

>> > dataset  

The sample data stored in the dataframe is shown in Fig. 18.2. To clean and refine 
the dataset, we first remove the timestamp column and any attributes that do not 
contain location information (i.e., columns with “Unnamed” in their name). This 
step ensures that we are only working with relevant data. 

>>> dataset.drop('TimeStamp', inplace =True , axis =1) 

>>> unnamed_columns = [col for col in dataset.columns \ 

>>> if 'Unnamed' in col] 

> >> dataset.drop(unnamed_columns , axis=1, inplace=True) 

>>> dataset  

18.2.3 Step 3: Preprocessing 

In this step, we perform several data cleaning and normalization tasks to prepare the 
data for analysis. Specifically, we: 

• Replace invalid or missing values with NaN to mark them for i mputation. 
• Remove sensors (columns) with more than 80% missing data. 
• Use Hot-Deck imputation to fill in the remaining missing values by replacing 

them with values from similar records. 

The following Python program shows how we implement these three steps:
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Program 1: Hot-Deck Imputation 

1 import numpy as np 

2 from sklearn.utils import shuffle 

3 

4 def hotDeckImputation(dataset): 

5 imputed_dataset = dataset.copy() 

6 for column in imputed_dataset.columns: 

7 missing_idx = imputed_dataset[column].isnull() 

8 non_missing_values = imputed_dataset.loc[missing_idx, 

column]→֒ 

9 donor_pool = shuffle(non_missing_values, 

random_state=42).reset_index(drop=True)→֒ 

10 donor_pool_expanded = np.resize(donor_pool.values, 

missing_idx.sum())→֒ 

11 imputed_dataset.loc[missing_idx, column] = 

donor_pool_expanded→֒ 

12 return imputed_dataset 

>>> import numpy as np 

>>> dataset.replace(['None', 'Nan'], np.nan, 

>>> inplace=True) 

>>> dataset.where(dataset <= 250, np.nan, inplace=True) 

>>> dataset.where(dataset > 0, 0, inplace=True) 

>>> threshold = 0.8 * len(dataset) 

>> > dataset = dataset.dropna(thresh=threshold , axis=1) 

>>> dataset = hotDeckImputation(dataset) 

>>> dataset

18.2.4 Step 4: Building Forecast Model 

In this step, we apply the renowned LSTM technique to pollution forecast values of 
the sensors in the database. 

Program 2: LSTM Model 

1 import pandas as pd 
2 import numpy as np 
3 from sklearn.preprocessing import MinMaxScaler 
4 import tensorflow as tf
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5 from tensorflow.keras.models import Sequential 
6 from tensorflow.keras.layers import LSTM, Dense, Dropout, Input 
7 

8 # Assuming you have your 'dataset' loaded before this part 
9 num_columns = int(input("How many columns would you like to predict? ")) 

10 columns_to_predict = dataset.columns[:num_columns] 
11 all_predictions = {} 
12 

13 for index, column in enumerate(columns_to_predict, 1): 
14 print(f"Processing column {index}/{len(columns_to_predict)}: 

{column}")→֒ 

15 data = pd.to_numeric(dataset[column], 
errors='coerce').dropna().values.reshape(-1, 1)→֒ 

16 scaler = MinMaxScaler() 
17 data_scaled = scaler.fit_transform(data) 
18 X, y = [], [] 
19 for i in range(len(data_scaled) - 1): 
20 X.append(data_scaled[i:i+1, 0]) 
21 y.append(data_scaled[i+1, 0]) 
22 X, y = np.array(X), np.array(y) 
23 X = X.reshape(X.shape[0], X.shape[1], 1) 
24 

25 model = Sequential() 
26 model.add(Input(shape=(1, 1))) 
27 model.add(LSTM(units=50)) 
28 model.add(Dropout(0.2)) 
29 model.add(Dense(units=50)) 
30 model.add(Dense(1)) 
31 

32 model.compile(loss='mean_squared_error', optimizer='adam') 
33 model.fit(X, y, epochs=10, batch_size=32, verbose=0) 
34 

35 next_hours_input = X[-1:] 
36 next_hours_predictions = [] 
37 

38 for _ in range(24): 
39 next_hour_prediction = model.predict(next_hours_input, verbose=0) 
40 next_hours_predictions.append(next_hour_prediction.flatten()[0]) 
41 next_hours_input = np.array([[next_hour_prediction.flatten()[0]]]) 
42 next_hours_input = next_hours_input.reshape(1, 1, 1) 
43 

44 next_hours_predictions = 
scaler.inverse_transform(np.array(next_hours_predictions).reshape 
(-1, 1))

→֒

→֒ 

45 all_predictions[column] = next_hours_predictions.flatten() 
46 

47 predictions_df = pd.DataFrame(all_predictions) 
48 

49 output_path = 'LSTM_predicted_values.csv' 
50 predictions_df.to_csv(output_path, index_label='Index') 
51 print(f"Predictions saved")
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18.2.5 Step 5: Converting the Predicted Multiple Timeseries 

Data into a Transactional Database 

At this stage, we convert the dataset into a transactional database format for frequent 
pattern mining. PM2.5 . values greater than or equal to 8 are considered hazardous. 
Therefore, we set this as the threshold and convert the dataset into a binary format, 
where timestamps and locations with hazardous pollution levels are represented. 

>>> from PAMI.extras. convert import denseDF2DB as db 

>>> obj = db. denseDF2DB (predictions_df) 

>>> ob j. convert2TransactionalDatabase 

>>> ('TDB.csv',' >=',8)  

Next, we derive the statistical details of the transactional database to understand 
the distribution of items’ frequencies. Understanding this distribution is crucial to 
specify an appropriate minimum support value. 

>>> from PAMI.extras.dbStats import 

>>> TransactionalDatabase as tds 

>>> obj = tds.TransactionalDatabase('TDB.csv') 

>>> obj.run() 

>>> obj .printStats() 

>>> obj. plotGraphs()  

18.2.6 Step 6: Pattern Discovery 

Now that we have transformed the data into a transactional format and understood 
the distributions of its items and transactions, we apply frequent pattern mining 
algorithms such as FP-growth to identify pollution hotspots. These hotspots repre-
sent locations where people were frequently exposed to high PM2.5 . levels. 

>>> from PAMI. frequentPattern .basic import FPGrowth 

>>> as ab 

>>> obj = ab. FPGrowth ('TDB.csv', 15) 

>>> obj.mine () 

>>> o bj. printResults () 

>>> obj.save(' FPs.txt')  

18.2.7 Step 6: Visualization of Patterns 

Once we have discovered the frequent patterns, we can visualize their spatial 
distribution by using the following code: 

>>> from PAMI.extras.graph import visualizePatterns 

>>> as fig 
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Fig. 18.3 Spatially the areas that may witness high pollution levels shortly 

>>> obj = fig. visualizePatterns ('FPs.txt ',  1)  

>>> o bj. visualize (width =1000 , height =900)

Figure 18.3 shows the distribution of high pollution levels across Japan, high-
lighting both sporadic pollution events and consistent hotspots. The two areas in 
this figure represent regions that may witness high pollution shortly. This repeated 
exposure in specific locations poses significant health risks to the local population. 

These insights are valuable for guiding policy decisions. Areas 1 and 2, with 
concentrated high pollution, should be prioritized for interventions to reduce 
exposure. In contrast, Areas 3 and 4, despite frequent pollution events, may require 
less urgent action, but further investigation is needed to understand the exposure 
risks fully. This information can help target pollution reduction efforts where they 
are most needed to protect public health. 

18.3 Conclusion 

This chapter presented a systematic approach to forecasting air pollution levels and 
uncovering hidden patterns in the predicted data. By leveraging historical PM2.5 . 

sensor data and employing an LSTM-based forecasting model, we demonstrated 
how future pollution trends can be predicted with high temporal granularity. 
The transformation of forecasted data into a transactional database enabled the 
application of frequent pattern mining techniques, revealing critical pollution 
hotspots across different geographical regions. The visualized patterns provided 
actionable insights, highlighting areas with consistently high pollution levels and
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identifying potential health risks for nearby populations. These findings can serve 
as a foundation for policymakers and environmental agencies to implement targeted 
interventions and improve air quality management strategies. Future work could 
extend this approach by incorporating additional meteorological factors, refining 
prediction models, and exploring adaptive pattern detection methods to enhance the 
accuracy and reliability of pollution forecasts. 
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